Skip to main content
Log in

Water Activity Dependence of Lipases in Non-aqueous Biocatalysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Eleven lipases are tested and it was found that lipases can be divided into three types according to water activity dependence. The first type is lipase that has low water activity dependence and works in a low water activity, its performance changes little with the change of water activity. The optimum water activity is 0.19 and Newlase F (Rhizopus niveus), lipase FAP-15 (Rhizopus oryzae) belong to this type. The second type is lipase that has medium water activity dependence and its performance changes with the change of water activity. Most lipases belong to this type and the optimum water activity in this type is about 0.60. The third type is lipase that has a high water activity dependence and works only in a high water activity (a w  > 0.75). WGL (wheat germ) belongs to this type and the optimum water activity is 0.90. The relationship between enantioselectivity and water activity is also discussed and the enantioselectivity seems to be independent of water activity. And we also compared the two control methods of water activity, it was found that the method which add solid salt hydrates to the reaction mixture (method II) is more stable and effective throughout the reaction than the method that pre-equilibrate via the vapor phase (method I). The addition concentration of salt hydrates is also investigated and the optimum concentration is 1 g/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel, R. N. (2006). Current Organic Chemistry, 10, 1289–1321. doi:10.2174/138527206777698011.

    Article  CAS  Google Scholar 

  2. Faber, K. (2004). Biotransformations in Organic Chemistry (5th ed.). Berlin: Springer.

    Google Scholar 

  3. Halling, P. J. (1992). Biotechnology Techniques, 6, 271–276. doi:10.1007/BF02439357.

    Article  CAS  Google Scholar 

  4. Wehtje, E., Costes, D., & Adlercreutz, P. (1997). Journal of Molecular Catalysis B, Enzymatic, 3, 221–230. doi:10.1016/S1381-1177(97)00003-9.

    Article  CAS  Google Scholar 

  5. Halling, P. J. (2002). In K. Drauz & H. Waldmann (Eds.), Enzyme catalysis in organic synthesis Vol. I, pp. 259–285. Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  6. Wehtje, E., Svensson, I., Adlercreutz, P., & Mattiasson, B. (1994). Biotechnology Techniques, 7, 873–878. doi:10.1007/BF00156365.

    Article  CAS  Google Scholar 

  7. Zacharis, E., Omar, I. C., Partridge, J., Robb, D. A., & Halling, P. J. (1997). Biotechnology and Bioengineering, 55(2), 367–374. doi:10.1002/(SICI)1097-0290(19970720)55:2<367::AID-BIT14>3.0.CO;2-E.

    Article  CAS  Google Scholar 

  8. Harper, N., Dolman, M., Moore, B. D., & Halling, P. J. (2001). Enzyme & Microbial Technology, 29, 413–416. doi:10.1016/S0141-0229(01)00403-3.

    Article  CAS  Google Scholar 

  9. Gupta, M. N., & Roy, I. (2004). European Journal of Biochemistry, 271, 2575–2583. doi:10.1111/j.1432-1033.2004.04163.x.

    Article  CAS  Google Scholar 

  10. Quiro’s, M., Parker, M.-C., & Turner, N. J. (2001). Journal of Organic Chemistry, 66, 5074–5079. doi:10.1021/jo0101104.

    Article  Google Scholar 

  11. Solares, L. F., Lavandera, I., Gotor-Ferna’ndez, V., Brieva, R., & Gotor, V. (2006). Tetrahedron, 62, 3284–3291. doi:10.1016/j.tet.2006.01.061.

    Article  CAS  Google Scholar 

  12. Micaelo, N. M., Teixeira, V. H., Baptista, A. M., & Soares, C. M. (2005). Biophysical Journal, 89, 999–1008. doi:10.1529/biophysj.105.063297.

    Article  CAS  Google Scholar 

  13. HGgberg, H.-E., Edlund, H., Berglund, P., & Hedenstrom, E. (1993). Tetrahedron: Asymmetry, 4(10), 2123–2126. doi:10.1016/S0957-4166(00)80055-5.

    Article  Google Scholar 

  14. Orrenius, C., Norin, T., Hult, K., & Carrea, G. (1995). Tetrahedron Asymmetry, 6(12), 3023–3030. doi:10.1016/0957-4166(95)00399-1.

    Article  CAS  Google Scholar 

  15. Xia, X., Wang, Y.-H., Yang, B., & Wang, X. (2008). Biotechnology Letters, . doi:10.1007/s10529-008-9823-1.

    Google Scholar 

  16. Chamouleau, F., Coulon, D., Girardin, M., & Ghoul, M. (2001). Journal of Molecular Catalysis B: Enzymatic, 11, 949–954. doi:10.1016/S1381-1177(00)00166-1.

    Article  CAS  Google Scholar 

  17. Sarkari, M., Knutson, B. L., & Chen, C.-S. (1999). Biotechnology & Bioengineering, 65(3), 259–262. doi:10.1002/(SICI)1097-0290(19991105)65:3<258::AID-BIT2>3.0.CO;2-A.

    Article  Google Scholar 

  18. Chua, L. S., & Sarmidi, M. R. (2006). Enzyme & Microbial Technology, 38, 551–556. doi:10.1016/j.enzmictec.2005.07.027.

    Article  CAS  Google Scholar 

  19. Perraud, R., & Laboret, F. (1995). Applied Microbiology & Biotechnology, 44, 321–326. doi:10.1007/BF00169923.

    Article  CAS  Google Scholar 

  20. Hirata, H., Higuchi, K., & Yamashina, T. (1990). Journal of Biotechnology, 14, 157–167. doi:10.1016/0168-1656(90)90004-U.

    Article  CAS  Google Scholar 

  21. Partridge, J., Dennison, P. R., Moore, B. D., & Halling, P. J. (1998). Biochimica et Biophysica Acta, 1386, 79–89.

    CAS  Google Scholar 

  22. Valivety, R. H., Halling, P. J., Peilow, A. D., & Macrae, A. R. (1992). BBA, 1122, 143–146.

    CAS  Google Scholar 

  23. Edlund, H., Berglund, P., Jensen, M., Hedenstrom, E., & Hogberg, H. E. (1996). Acta Chemica Scandinavica, 50, 666–671. doi:10.3891/acta.chem.scand.50-0666.

    Article  CAS  Google Scholar 

  24. Carrea, G., Ottolina, G., & Riva, S. (1995). Trends in Biotechnology, 13, 63–67. doi:10.1016/S0167-7799(00)88907-6.

    Article  CAS  Google Scholar 

  25. Li W., Yang B., Wang Y., Wei D., Whiteley C., Wang X., (2008) Journal of molecular catalysis B: enzymatic, Available online 31 October 2008.

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (20506007 and 20706021). We are grateful to Amano enzyme Inc. for the generous gift of enzymes used in this study. And we wish to thank the suggestion from Professor C.G. Whiteley.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hua Wang or Xiaoning Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, X., Wang, C., Yang, B. et al. Water Activity Dependence of Lipases in Non-aqueous Biocatalysis. Appl Biochem Biotechnol 159, 759–767 (2009). https://doi.org/10.1007/s12010-009-8618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8618-8

Keywords

Navigation