Skip to main content
Log in

Extraction of Co-Products from Biomass: Example of Thermal Degradation of Silymarin Compounds in Subcritical Water

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2009

Abstract

In an effort to increase revenues from a given feedstock, valuable co-products could be extracted prior to biochemical or thermochemical conversion with subcritical water. Although subcritical water shows significant promise in replacing organic solvents as an extraction solvent, compound degradation has been observed at elevated extraction temperatures. First order thermal degradation kinetics from a model system, silymarin extracted from Silybum marianum, in water at pH 5.1 and 100, 120, 140, and 160 °C were investigated. Water pressure was maintained slightly above its vapor pressure. Silymarin is a mixture of taxifolin, silichristin, silidianin, silibinin, and isosilibinin. The degradation rate constants ranged from 0.0104 min−1 at 100 °C for silichristin to a maximum of 0.0840 min−1 at 160 °C for silybin B. Half-lives, calculated from the rate constants, ranged from a low of 6.2 min at 160 °C to a high of 58.3 min at 100 °C, both for silichristin. The respective activation energies for the compounds ranged from 37.2 kJ/gmole for silidianin to 45.2 kJ/gmole for silichristin. In extracting the silymarin with pure ethanol at 140 °C, no degradation was observed. However, when extracting with ethanol/water mixtures at and 140 °C, degradation increased exponentially as the concentration of water increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hess, R., Wright, C., & Kenney, K. (2007). Biofuels, Bioproducts & Biorefining, 26, 181–190.

    Article  Google Scholar 

  2. Kumar, A., & Sokhansanj, S. (2007). Bioresource Technology, 98, 1033–1044. doi:10.1016/j.biortech.2006.04.027.

    Article  CAS  Google Scholar 

  3. McAloon, A., Taylor, F., Yee, W., Ibsen, K., & Wooley, R. (2000). National Renewable Energy Laboratory. 2000. NREL/TP-580-28893.

  4. Lynd, L., Laser, M., Bransby, D., Dale, B., Davison, B., Hamilton, R., et al. (2008). Nature Biotechnology, 26, 169–172. doi:10.1038/nbt0208-169.

    Article  CAS  Google Scholar 

  5. King, J. (2006). In Modern extraction techniques: Food and agricultural samples (pp. 79–95). Washington, D.C.: American Chemical Society.

    Google Scholar 

  6. American Society of Agricultural Engineering (ASABE) (2002). ASAE S319.1. “Method determining and expressing fineness of feed materials by sieving (49th ed.). USA: St. Joseph.

    Google Scholar 

  7. Miller, D., & Hawthorne, S. (2000). Journal of Chemical & Engineering Data, 45, 315–318. doi:10.1021/je990278a.

    Article  CAS  Google Scholar 

  8. Wallace, S., Raible, J., Carrier, D. J., Vaughn, K., Griffis, C., Clausen, E., et al. (2007). Canadian Journal of Physiology and Pharmacology, 85, 894–902. doi:10.1139/Y07-058.

    Article  CAS  Google Scholar 

  9. Duan, L., Carrier, D. J., & Clausen, E. (2004). Applied Biochemistry and Biotechnology, 114, 559–568. doi:10.1385/ABAB:114:1-3:559.

    Article  Google Scholar 

  10. Wallace, S., Carrier, D. J., Beitle, R., Clausen, E., & Griffis, C. (2003). Journal of Nutraceuticals, Functional & Medical Foods, 4, 37–48. doi:10.1300/J133v04n02_05.

    Article  Google Scholar 

  11. Kawamura, F., Kikuchi, Y., Ohira, T., & Yatagai, M. (1999). Journal of Natural Products, 62, 244–247. doi:10.1021/np980310j.

    Article  CAS  Google Scholar 

  12. Jiménez-Carmona, M., Ubera, J., & Luque de Castro, M. (1999). Journal of Chromatography. A, 855, 625–632. doi:10.1016/S0021-9673(99)00703-7.

    Article  Google Scholar 

  13. Suomi, J., Sirén, H., Hartonen, K., & Riekkola, M. (2000). Journal of Chromatography A, 868, 73–83.

    Article  CAS  Google Scholar 

  14. Chen, P., Tu, Y., Wu, C., Jong, T., & Chang, C. (2004). Journal of Agricultural and Food Chemistry, 52, 1945–1949.

    Article  CAS  Google Scholar 

  15. Ibañez, E., Kubátová, A., Señoráns, F., Cavero, S., Reglero, G., & Hawthorne, S. (2003). Journal of Agricultural and Food Chemistry, 51, 375–382. doi:10.1021/jf025878j.

    Article  Google Scholar 

  16. Van Loey, A., Ooms, V., Weemaes, C., Van den Broeck, I., Ludikhuyze, L., Indrawati, D., et al. (1998). Journal of Agricultural and Food Chemistry, 46, 5289–5294. doi:10.1021/jf980505x.

    Article  Google Scholar 

  17. Coiffard, A., Coiffard, J., Peigne, M., & Roeck-Holtzhauer, M. (1998). Journal of the Science of Food and Agriculture, 77, 566–570. doi:10.1002/(SICI)1097-0010(199808)77:4<566::AID-JSFA84>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  18. Bilia, A. R., Bergonzi, M. C., Gallori, S., Mazzi, G., & Vincieri, F. F. (2002). Journal of Pharmaceutical and Biomedical Analysis, 30, 613–624. doi:10.1016/S0731-7085(02)00352-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Julie Carrier.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-009-8672-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, L., Wallace, S.N., Engelberth, A. et al. Extraction of Co-Products from Biomass: Example of Thermal Degradation of Silymarin Compounds in Subcritical Water. Appl Biochem Biotechnol 158, 362–373 (2009). https://doi.org/10.1007/s12010-009-8594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8594-z

Keywords

Navigation