Skip to main content
Log in

Enhanced Production of an Extracellular β-d-Fructofuranosidase Fructohydrolase from a 2-Deoxy-d-glucose Stabilized Mutant of Candida utilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme β-d-fructofuranosidase fructohydrolase (FFH) cleaves the α-1,4 glycosidic linkage between α-d-glucose and β-d-fructose molecules of sucrose, releasing monosaccharides by hydrolysis. In the present study, FFH production in Candida utilis GC-46, a lipolytic wild yeast strain was improved by exposure to N-methyl N-nitro N-nitroso guanidine (NG) and 2-deoxy-d-glucose (2dg) at various levels. The mutant strain NG-5 was obtained after exposure to 0.06 mg/ml of NG for 20 min. NG-5 offers improved extracellular FFH production (34 ± 2.6 U/ml/min) when compared to the wild strain (1.15 ± 0.01 U/ml/min). A 40-fold increase of FFH (45.65 ± 2.0 U/ml/min) was achieved when the process parameters, including incubation period (48 h), sucrose concentration (5.0 g/l), initial pH (6.0), inoculum size (2.0% v/v, 16 h old), and urea concentration (0.2%, w/v) were identified using Plackett–Burman design. The kinetic parameters viz. Q p (0.723 U/g/h), Y p/s (2.036 U/g), and q p (0.091 U/g yeast cells/h) indicate that NG-5 is a hyperproducer of extracellular FFH with a concomitant increase in growth rate. The volumetric productivity of NG-5 was over sixfold improved over the parental strain. The enzyme production improvement is highly significant (HS, LSD 0.042, p ≤ 0.05), indicating commercial utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barlikova, A., Svorc, J., & Miertus, S. (1991). Analytical Chemistry, 247, 83–87.

    CAS  Google Scholar 

  2. Dynesen, J., Smits, H. P., Olsson, L., & Nielsen, J. (1998). Applied Microbiology and Biotechnology, 50, 579–582. doi:10.1007/s002530051338.

    Article  CAS  Google Scholar 

  3. Rincon, A. M., Codon, A. C., & Benitez, T. (2001). Applied and Environmental Microbiology, 67, 4279–4285. doi:10.1128/AEM.67.9.4279-4285.2001.

    Article  CAS  Google Scholar 

  4. Sanchez, M. P., Huidobro, J. F., Mato, I., & Sancho, M. T. (2001). Journal of Agricultural and Food Chemistry, 49, 416–422. doi:10.1021/jf0003350.

    Article  CAS  Google Scholar 

  5. Roitsch, T., Balibrea, M. E., Hofmann, M., & Sinha, A. K. (2003). Journal of Experimental Botany, 54, 513–524. doi:10.1093/jxb/erg050.

    Article  CAS  Google Scholar 

  6. Neto, J., Infanti, P., & Vitolo, M. (1996). Applied Biochemistry and Biotechnology, 58, 407–412. doi:10.1007/BF02941720.

    Article  Google Scholar 

  7. Murray, R., Walsh, K., & Foley, G. (2007). Biotechnology Progress, 23, 79–87.

    Google Scholar 

  8. Haq, I., Ali, S., & Baig, M. A. (2004). Biologia, 50, 25–33.

    Google Scholar 

  9. Ginka, I. F., Emilina, D. S., & Dora, M. B. (2004). Zurich Naturforsch, 59, 99–103.

    Google Scholar 

  10. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  11. Akgol, S., Kacarb, Y., Denizlia, A., & Aricab, M. Y. (2001). Food Chemistry, 74, 281–288. doi:10.1016/S0308-8146(01) 00150-9.

    Article  CAS  Google Scholar 

  12. Pirt, S. J. (1975). In principles of microbe and cell cultivation (2nd ed.), pp. 116–124. London: Blackwell Scientific.

    Google Scholar 

  13. Snedecor, G., & Cochran, W. G. (1980). In statistical methods (7th ed.), pp. 80–86. Iowa: Iowa State University.

    Google Scholar 

  14. Plackett, R. L., & Burman, J. P. (1946). Biometrika, 33, 305–325. doi:10.1093/biomet/33.4.305.

    Article  Google Scholar 

  15. Ahuja, S. K., Ferreira, G. M., & Morreira, A. R. (2004). Biotechnology and Bioengineering, 85, 666–675. doi:10.1002/bit.10880.

    Article  CAS  Google Scholar 

  16. Herwig, C., Doerries, C., Marison, I., & Stockar, U. V. (2001). Biotechnology and Bioengineering, 82, 247–258. doi:10.1002/bit.10004.

    Article  Google Scholar 

  17. Haq, I., Baig, M. A., & Ali, S. (2005). World Journal of Microbiology & Biotechnology, 21, 287–292.

    Google Scholar 

  18. Bokosa, I., Krastanov, A., & Roshkova, Z. I. (1992). Nauchni Tritical, 39, 269–279.

    CAS  Google Scholar 

  19. Vitolo, M., Duranti, M. A., & Pellegrim, M. B. (1995). Journal of Industrial Microbiology, 15, 75–79. doi:10.1007/BF01569803.

    Article  CAS  Google Scholar 

  20. Persike, D. S., Bonfim, T. M., Santos, M. H., Lyng, S. M., Chiarello, M. D., & Fontana, J. D. (2002). Bioresource Technology, 82, 79–85. doi:10.1016/S0960-8524(01) 00121-3.

    Article  CAS  Google Scholar 

  21. Gancedo, J. M. (1998). Microbiology and Molecular Biology Reviews, 62, 334–361.

    CAS  Google Scholar 

  22. Hashimoto, S., Ogura, M., Aritomo, K., Hoshida, H., Nishizawa, Y., & Akada, R. (2005). Applied and Environmental Microbiology, 71, 312–319. doi:10.1128/AEM.71.1.312-319.2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S., Ashiq, M. Enhanced Production of an Extracellular β-d-Fructofuranosidase Fructohydrolase from a 2-Deoxy-d-glucose Stabilized Mutant of Candida utilis . Appl Biochem Biotechnol 159, 453–463 (2009). https://doi.org/10.1007/s12010-009-8575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8575-2

Keywords

Navigation