Treatment Variable Effects on Supercritical Gasification of High-Diversity Grassland Perennials

  • Bo ZhangEmail author
  • Zhigang Zhang
  • Marc von Keitz
  • Kenneth Valentas


Low-input high-diversity (LIHD) mixtures of native grassland perennials were subjected to a supercritical treatment process with the aim of obtaining hydrogen-rich gases. The process was studied based on the following treatment variables: reaction temperature (374 °C to 575 °C, corresponding to a pressure range of 22.1 to 40 MPa), residence time (10 to 30 min), biomass content in the feed, and catalysts (0% to 4% NaOH and solid alkali CaO–ZrO2). The gaseous phase produced from gasification of LIHD primarily consisted of hydrogen (H2), with a mixture of carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2). The statistical significance of treatment variables was evaluated using analysis of variance (ANOVA). It showed that at the level of P < 0.05, temperature, catalysts, and biomass content in the feed significantly affected gas yields, while residence time was not significant.


Supercritical gasification Biodiversity Hydrogen Statistical significance 



The University of Minnesota Initiative for Renewable Energy and the Environment (IREE) is gratefully acknowledged for its financial support. The authors would like to thank collaborators: Dr. David Tilman, Dr. Shri Ramaswamy, Dr. Ulrike W Tschirner, Dr. Waleed Wafa Al-Dajani, and Dr. Huajiang Huang.


  1. 1.
    Demirbas, A. (2005). Energy Sources, 27, 1409–1417. doi: 10.1080/00908310490449379.CrossRefGoogle Scholar
  2. 2.
    Kusdiana, D., Minami, E., Ehara, K., & Saka, S. (2002) 12th European Conference on Biomass for energy, Industry and Climate Protection; Amsterdam, The Netherlands; pp. 789–792.Google Scholar
  3. 3.
    Hao, X. H., Guo, L. J., Mao, X., Zhang, X. M., & Chen, X. J. (2003). International Journal of Hydrogen Energy, 28.Google Scholar
  4. 4.
    Huber, G. W., Iborra, S., & Corma, A. (2006). Chemical Reviews, 106, 4044–4098. doi: 10.1021/cr068360d.CrossRefGoogle Scholar
  5. 5.
    Mozaffarian, M., Deurwaarder, E. P., & Kersten, S. R. A. (2004)
  6. 6.
    Tilman, D., Hill, J., & Lehman, C. (2006). Science, 314, 1598–1600. doi: 10.1126/science.1133306.CrossRefGoogle Scholar
  7. 7.
    NREL’s Standard Biomass Analytical Procedures.
  8. 8.
    Zhang, B., von Keitz, M., & Valentas, K. (2008). Applied Biochemistry and Biotechnology, 147, 143–150. doi: 10.1007/s12010-008-8131-5.CrossRefGoogle Scholar
  9. 9.
    Yu, F., Ruan, R., Chen, P., Deng, S., Liu, Y., & Lin, X. (2007). Transactions of the ASABE, 50, 175–180.Google Scholar
  10. 10.
    Zhang, B., von Keitz, M., & Valentas, K. (2008). Biotechnology and Bioengineering, 101(5), 903–912. doi: 10.1002/bit.21960.CrossRefGoogle Scholar
  11. 11.
    Yu, F., Ruan, R., Lin, X., Liu, Y., Fu, R., Li, Y., et al. (2006). Applied Biochemistry and Biotechnology, 130, 563–573. doi: 10.1385/ABAB:130:1:563.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Bo Zhang
    • 1
    • 2
    Email author
  • Zhigang Zhang
    • 1
  • Marc von Keitz
    • 1
  • Kenneth Valentas
    • 1
  1. 1.BioTechnology InstituteUniversity of MinnesotaSt. PaulUSA
  2. 2.Biological Engineering Program, Department of Natural Resources and Environmental DesignNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations