Skip to main content

Advertisement

Log in

A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A techno-economic analysis was conducted to investigate the feasibility of a gasification-based hybrid biorefinery producing both hydrogen gas and polyhydroxyalkanoates (PHA), biodegradable polymer materials that can be an attractive substitute for conventional petrochemical plastics. The biorefinery considered used switchgrass as a feedstock and converted that raw material through thermochemical methods into syngas, a gaseous mixture composed mainly of hydrogen and carbon monoxide. The syngas was then fermented using Rhodospirillum rubrum, a purple non-sulfur bacterium, to produce PHA and to enrich hydrogen in the syngas. Total daily production of the biorefinery was assumed to be 12 Mg of PHA and 50 Mg of hydrogen gas. Grassroots capital for the biorefinery was estimated to be $55 million, with annual operating costs at $6.7 million. With a market value of $2.00/kg assumed for the hydrogen, the cost of producing PHA was determined to be $1.65/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown, R. C. (2003). Biorenewable resources: Engineering new products from agriculture (1st ed.). Ames, IA: Iowa State Press.

    Google Scholar 

  2. Brown, R. C. (2007). Applied Biochemistry and Biotechnology, 137–140, 947–956. doi:10.1007/s12010-007-9110-y.

    Article  Google Scholar 

  3. Bridgwater, A. V. (1995). Fuel and Energy Abstracts, 36, 269–269.

    Google Scholar 

  4. Do, Y. S., Smeenk, J., Broer, K. M., Kisting, C. J., Brown, R., & Heindel, T. J. (2007). Biotechnology and Bioengineering, 97, 279–286. doi:10.1002/bit.21226.

    Article  CAS  Google Scholar 

  5. McKendry, P. (2002). Bioresource Technology, 83, 55–63. doi:10.1016/S0960-8524(01)00120-1.

    Article  CAS  Google Scholar 

  6. Klasson, K. T., Ackerson, M. D., Clausen, E. C., & Gaddy, J. L. (1992). Enzyme and Microbial Technology, 14, 602–608. doi:10.1016/0141-0229(92)90033-K.

    Article  CAS  Google Scholar 

  7. Stevens, D. J. (2001). Update and summary of recent progress. Gorden, CO: NREL.

    Google Scholar 

  8. Probstein, R. F., & Hicks, R. E. (1982). Synthetic fuels. New York, NY: McGraw-Hill.

    Google Scholar 

  9. Bredwell, M. D., Srivastava, P., & Worden, R. M. (1999). Biotechnology Progress, 15, 834–844. doi:10.1021/bp990108m.

    Article  CAS  Google Scholar 

  10. Datar, R. P., Shenkman, R. M., Cateni, B. G., Huhnke, R. L., & Lewis, R. S. (2004). Biotechnology and Bioengineering, 86, 587–594. doi:10.1002/bit.20071.

    Article  CAS  Google Scholar 

  11. Marchessault, R. H. (1996). Trends in Polymer Science (Regular Ed.), 4, 163–168.

    CAS  Google Scholar 

  12. Klasson, K., Gupta, A., Clausen, E., & Gaddy, J. (1993). Applied Biochemistry and Biotechnology, 39–40, 549–557. doi:10.1007/BF02919017.

    Article  Google Scholar 

  13. Chiesa, P., Consonni, S., Kreutz, T., & Robert, W. (2005). International Journal of Hydrogen Energy, 30, 747–767. doi:10.1016/j.ijhydene.2004.08.002.

    Article  CAS  Google Scholar 

  14. Choi, J., & Lee, S. Y. (1997). Bioprocess and Biosystems Engineering, 17, 335–342.

    CAS  Google Scholar 

  15. Cowger, J., Klasson, K., Ackerson, M., Clausen, E., & Caddy, J. (1992). Applied Biochemistry and Biotechnology, 34–35, 613–624. doi:10.1007/BF02920582.

    Article  Google Scholar 

  16. Kapic, A., & Heindel, T. J. (2006). Chemical Engineering Research and Design, 84, 239–245. doi:10.1205/cherd.05117.

    Article  CAS  Google Scholar 

  17. Kapic, A., Jones, S. T., & Heindel, T. J. (2006). Industrial & Engineering Chemistry Research, 45, 9150–9155. doi:10.1021/ie060655u.

    Article  CAS  Google Scholar 

  18. Lysenko, S. G. (2006). MS thesis. Iowa State University, Ames, IA.

  19. Nelson, N. A. (2006). MS thesis. Iowa State University, Ames, IA.

  20. Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook (7th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  21. Ritzert, J. A. (2004). MS thesis. Iowa State University, Ames, IA.

  22. Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B., & Jechura, J. (2005). Biomass to hydrogen production detailed design and economics utilizing the Battelle Columbus laboratory indirectly-heated gasifier. Golden, CO: NREL.

    Google Scholar 

  23. Fogler, H. S. (2006). Elements of chemical reaction engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  24. Ramachandran, P. A., & Chaudhari, R. V. (1983). Three-phase catalytic reactors (vol. 2). New York, NY: Gordon and Breach.

    Google Scholar 

  25. Milne, T. A., Evans, R. J., & Abatzaglou, N. (1998). Biomass gasifier “tars”: Their nature, formation, and conversion. Golden, CO: NREL.

    Google Scholar 

  26. Zhang, R., Brown, R. C., Suby, A., & Cummer, K. (2004). Energy Conversion and Management, 45, 995–1014. doi:10.1016/j.enconman.2003.08.016.

    Article  CAS  Google Scholar 

  27. Smith, W. F. (1993). Structure and properties of engineering alloys (2nd ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  28. Gerngross, T. U. (1999). Nature Biotechnology, 17, 541–544. doi:10.1038/9843.

    Article  CAS  Google Scholar 

  29. Hydrogen Posture Plan 2006. Retrieved 3 November 2008 from http://www.hydrogen.energy.gov.

  30. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector 2005. Retrieved 21 October 2008 from http://www.eia.doe.gov.

  31. Peters, M. S., Timmerhaus, K. D., & West, R. E. (2002). Plant design and economics for chemical engineers (5th ed.). Boston, MA: McGraw-Hill.

    Google Scholar 

  32. Ulrich, G. D. (1984). A guide to chemical engineering process design and economics. New York, NY: Wiley.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the USDA under contract no. NRCS 68-3A75-3-151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, D., Chipman, D.C., Bents, S.C. et al. A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass. Appl Biochem Biotechnol 160, 1032–1046 (2010). https://doi.org/10.1007/s12010-009-8560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8560-9

Keywords

Navigation