Skip to main content
Log in

Transient Expression of Minimum Linear Gene Cassettes in Onion Epidermal Cells Via Direct Transformation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5′-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca2+, surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 °C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tadeusz, W., Anna, T., & Richard, M. (2005). Plant Biotechnology Journal, 3, 259–273. doi:10.1111/j.1467-7652.2005.00123.x.

    Article  Google Scholar 

  2. Corrin, V. W., & Margaret, I. B. (1998). In D. F. Gary, & C. T. Sally (Eds.), Plant virology protocols, vol. 81: Preparation of coat protein-containing binary vectors for use in agrobacterium-mediated transformation pp. 341–352. Totowa, NJ: Humana.

    Google Scholar 

  3. Wu, W., Su, Q., Xia, X. Y., Wang, Y., Luan, Y. S., & An, L. J. (2008). Euphytica, 159, 17–25. doi:10.1007/s10681-007-9451-1.

    Article  CAS  Google Scholar 

  4. Zhong, S., Lin, Z., & Grierson, D. (2008). Journal of Experimental Botany, 59, 965–972. doi:10.1093/jxb/ern021.

    Article  CAS  Google Scholar 

  5. György, B., György, C., Cecilia, G. P., Perez, E. D., & György, H. (2006). The Journal of Biological Chemistry, 281, 17347–17358. doi:10.1074/jbc.M600906200.

    Article  Google Scholar 

  6. Sharma, K. K., Bhatnagar-Mathur, P., & Thorpe, T. A. (2005). In Vitro Cellular & Developmental Biology. Plant, 41, 102–112. doi:10.1079/IVP2004618.

    Article  CAS  Google Scholar 

  7. Ishizaki, K., Chiyoda, S., Yamato, K. T., & Kohchi, T. (2008). Plant & Cell Physiology, 49, 1084–1091. doi:10.1093/pcp/pcn085.

    Article  CAS  Google Scholar 

  8. Kavanagh, T. A., Jefferson, R. A., & Bevan, M. W. (1988). Molecular Genetics and Genomics, 215, 38–45.

    CAS  Google Scholar 

  9. Mateusz, W., Edward, K., & Przemysław, L. (2006). Acta Biochimica Polonica, 53, 289–298.

    Google Scholar 

  10. Sreeramanan, S., Maziah, M., Abdullah, M. P., Sariah, M., Xavier, R., & Nor’ Aini, M. (2005). Asia Pacific Journal of Molecular Biology & Biotechnology, 13, 35–57.

    Google Scholar 

  11. Christoph, M., & Wolfgang, W. (1989). Plant Cell Reports, 8, 148–151. doi:10.1007/BF00716828.

    Article  Google Scholar 

  12. Curtis, I. S., & Nam, H. G. (2001). Transgenic Research, 10, 363–371. doi:10.1023/A:1016600517293.

    Article  CAS  Google Scholar 

  13. Dow Corning, Q. 2-5211 Superwetting Agent. Retrieved 31 December 2007 from http://www.russochemie.ru/files/dc/q2-5211.pdf.

  14. Ziemienowicz, A., Görlich, D., Lanka, E., Hohn, B., & Rossi, L. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 3729–3733. doi:10.1073/pnas.96.7.3729.

    Article  CAS  Google Scholar 

  15. Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., & Rossi, L. (2001). The Plant Cell, 13, 369–384.

    Article  CAS  Google Scholar 

  16. Vinod, K. S., & Rajam, M. V. (2007). Current Science, 92, 1727–1729.

    Google Scholar 

  17. Vongpaseuth, K., Nims, E., St Amand, M., Walker, E. L., & Roberts, S. C. (2007). Biotechnology Progress, 23, 1180–1185.

    CAS  Google Scholar 

  18. Miki, D., & Shimamoto, K. (2004). Plant & Cell Physiology, 45, 490–495. doi:10.1093/pcp/pch048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National R&D Project of Transgenic Crops of Ministry of Science and Technology of China (JY03-B-18-02), Dalian Municipal Science and Technology Program (2007B10NC137) and Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YQ., Yang, J., Xu, FP. et al. Transient Expression of Minimum Linear Gene Cassettes in Onion Epidermal Cells Via Direct Transformation. Appl Biochem Biotechnol 159, 739–749 (2009). https://doi.org/10.1007/s12010-009-8554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8554-7

Keywords

Navigation