Skip to main content
Log in

Improved Production of Ethanol by Novel Genome Shuffling in Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentation properties under the control of multiple genes of industrial Saccharomyces cerevisiae strain are difficult to alter with traditional methods. Here, we describe efficient and reliable genome shuffling to increase ethanol production through the rapid improvement of stress resistance. The strategy is carried out using yeast sexual and asexual reproduction by itself instead of polyethylene glycol-mediated protoplast fusion. After three rounds of genome shuffling, the best performing strain S3-10 was obtained on the special plate containing a high ethanol concentration. It exhibits substantial improvement in multiple stress tolerance to ethanol, glucose, and heat. The cycle of fermentation of S3-10 was not only shortened, but also, ethanol yield was increased by up to 10.96% compared with the control in very-high-gravity (VHG) fermentations. In total, S3-10 possesses optimized fermentation characteristics, which will be propitious to the development of bioethanol fermentation industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PEG:

polyethylene glycol

EMS:

ethyl methane sulfonate

CFU:

colony-forming units

HPLC:

high-performance liquid chromatography

FCAS:

flow-cytometry analysis

VHG:

very high gravity

References

  1. Steinmeta, L. M., Sinha, H., Richaeds, D. R., Spiegelman, J. I., Oefner, P. J., McCusker, J. H., et al. (2002). Dissecting the architecture of a quantitative trait locus in yeast. Nature, 416, 326–330. doi:10.1038/416326a.

    Article  Google Scholar 

  2. Boulton, B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1996). Yeast and biochemistry of ethanol fermentation. In B. Boulton, V. L. Singleton, L. F. Bisson, & R. E. Kunkee (Eds.), Principles and practices of winemaking (pp. 139–172). New York: Chapman and Hall.

    Google Scholar 

  3. Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling. Nature Biotechnology, 20, 666–668. doi:10.1038/nbt0702-666.

    Article  CAS  Google Scholar 

  4. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314, 1565–1568. doi:10.1126/science.1131969.

    Article  CAS  Google Scholar 

  5. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., & Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646. doi:10.1038/415644a.

    Article  CAS  Google Scholar 

  6. Patnaik, R., Louie, S., Gavrilovic, V., Stemmer, W. P. C., Ryan, C. M., & Cardayre, S. (2002). Genome shuffling of lactobacillus for improved acid tolerance. Nature Biotechnology, 20, 707–712. doi:10.1038/nbt0702-707.

    Article  CAS  Google Scholar 

  7. Dai, M. H., & Copley, S. D. (2004). Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology, 70, 2391–2397. doi:10.1128/AEM.70.4.2391-2397.2004.

    Article  CAS  Google Scholar 

  8. Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393. doi:10.1007/s00253-006-0613-1.

    Article  CAS  Google Scholar 

  9. Wei, P., Li, Z., He, P., Lin, Y., & Jiang, N. (2008). Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance. Biotechnology and Applied Biochemistry, 49, 113–128. doi:10.1042/BA20070072.

    Article  CAS  Google Scholar 

  10. Giudici, P., Solieri, L., Pulvirenti, A. M., & Cassanelli, S. (2005). Strategies and perspectives for genetic improvement of wine yeasts. Applied Microbiology and Biotechnology, 66, 622–628. doi:10.1007/s00253-004-1784-2.

    Article  CAS  Google Scholar 

  11. Yu, L., Pei, X., Lei, T., Wang, Y., & Feng, Y. (2008). Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159. doi:10.1016/j.jbiotec.2008.01.008.

    Article  CAS  Google Scholar 

  12. Herman, P. K., & Rine, J. (1997). Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. The EMBO Journal, 16, 6171–6181. doi:10.1093/emboj/16.20.6171.

    Article  CAS  Google Scholar 

  13. Kong, Q. X., Cao, L. M., Zhang, A. L., & Chen, X. (2007). Overexpressing GlT1 in gpd1Δ mutant to improve the production of ethanol of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73, 1382–1386. doi:10.1007/s00253-006-0610-4.

    Article  CAS  Google Scholar 

  14. Lawrence, C. W. (2004). Guide to yeast genetics and molecular and cell biology. Methods in enzymology Part A. Elesevier academic press NK, 194.

  15. Houston, P., Simon, P. J., & Broach, J. R. (2004). The saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination. Genetics, 166, 1187–1197. doi:10.1534/genetics.166.3.1187.

    Article  CAS  Google Scholar 

  16. Spencer, J. F. T., & Spencer, D. M. (1996). Yeast Protocols: Methods in Cell and Molecular Biology, Mutagenesis in yeast. 17–18.

  17. Carlson, C. R., Grallert, B., Bernander, R., Stokke, T., & Boye, E. (1997). Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast (Chichester, England), 13, 1329–1335. doi:10.1002/(SICI)1097-0061(199711)13:14<1329::AID-YEA185>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  18. Ormerod, M. G., & Kubbies, M. (1992). Cell cycle analysis of asynchronous cells by flow cytometry using bromodeoxyuridine label and Hoechst-propidium iodide stain. Cytometry, 13, 678–685. doi:10.1002/cyto.990130703.

    Article  CAS  Google Scholar 

  19. Rautio, J. J., Huuskonen, A., Vuokko, H., Vidgren, V., & Londesborough, J. (2007). Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast (Chichester, England), 24, 741–760. doi:10.1002/yea.1510.

    Article  CAS  Google Scholar 

  20. Cardona, F., Carrasco, P., Perez-Ortin, J. E., Olmo, M., & Aranda, A. (2007). A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology, 28, 83–91. doi:10.1016/j.ijfoodmicro.2006.10.043.

    Article  Google Scholar 

  21. Jones, R. P. (1989). Biological principles for the effects of ethanol. Enzyme and Microbial Technology, 11, 130–153. doi:10.1016/0141-0229(89)90073-2.

    Article  CAS  Google Scholar 

  22. Zhao, K., Ping, W., Zhang, L., Liu, J., Lin, Y., Jin, T., et al. (2008). Screening and breeding of high taxol producing fungi by genome shuffling. Science in China Series C-Life Sciences, 51, 222–231. doi:10.1007/s11427-008-0037-5.

    Article  CAS  Google Scholar 

  23. Mayer, W. V., & Aguilera, A. (1990). High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutation Research, 231, 177–186. doi:10.1016/0027-5107(90)90024-X.

    CAS  Google Scholar 

  24. Devantier, R., Pedersen, S., & Olsson, L. (2005). Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Applied Microbiology and Biotechnology, 68, 622–629. doi:10.1007/s00253-005-1902-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author particularly thanks Prof. P. Ma for constructive advice on this work. The research was supported by the National Natural Science Foundation of China (no. 30470849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L. Improved Production of Ethanol by Novel Genome Shuffling in Saccharomyces cerevisiae . Appl Biochem Biotechnol 160, 1084–1093 (2010). https://doi.org/10.1007/s12010-009-8552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8552-9

Keywords

Navigation