Skip to main content
Log in

Enhancing Production of l-Serine by Increasing the glyA Gene Expression in Methylobacterium sp. MB200

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fermentation using methylotrophic bacteria is one of the most promising methods for l-serine production. Here we describe the metabolic engineering of a Methylobacterium strain to increase the production of l-serine. The glyA gene, encoding serine hydroxymethyltransferase (SHMT), was isolated from the genomic DNA of Methylobacterium sp. MB200, using a DNA fragment encoding Methylobacterium extorquens AM1 SHMT as a probe, and inserted into the vector pLAFR3. The resulting construct was transformed into Methylobacterium sp. MB200 using triparental mating. The genetic-engineered strain, designated as Methylobacterium sp. MB202, was shown to produce 11.4 ± 0.6 mg/ml serine in resting cell reactions from 30 mg/ml wet cells, 20 mg/ml glycine, and 70 mg/ml methanol in 2 days, representing a 4.4-fold increase from that of the wild strain. The results demonstrated the potential for improving l-serine production by manipulating the glyA in bacteria and should facilitate the production of l-serine using Methylobacterium sp. strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Izumi, Y., Yoshida, T., Miyazaki, S. S., Mitsunaga, T., Ohshiro, T., & Shimao, M. (1993). Journal of Applied Microbiology and Biotechnology, 39, 427–432. doi:10.1007/BF00205027.

    Article  CAS  Google Scholar 

  2. Piotr, S., Karl-Heinz, B., & Bernd, J. (2004). International Biodeterioration & Biodegradation, 53, 127–132. doi:10.1016/j.ibiod.2003.11.001.

    Article  Google Scholar 

  3. Shen, P.-H., & Wu, B. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 657–663. doi:10.1007/s10295-007-0238-0.

    Article  CAS  Google Scholar 

  4. Hagishit, T., Yoshida, T., Izumi, Y., & Mitsunaga, T. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 1604–1607.

    Article  Google Scholar 

  5. Yamada, H., Miyazaki, S. S., & Izumi, Y. (1986). Agricultural and Biological Chemistry, 50, 17–21.

    CAS  Google Scholar 

  6. Yoshida, T., Hagishita, T., Misunaga, T., & Izumi, Y. (1995). Journal of Fermentation and Bioengineering, 79, 181–183. doi:10.1016/0922-338X(95)94090-E.

    Article  CAS  Google Scholar 

  7. Yoshida, T., Misunaga, T., & Izumi, Y. (1993). Journal of Fermentation and Bioengineering, 75, 405–408. doi:10.1016/0922-338X(93)90085-M.

    Article  CAS  Google Scholar 

  8. Morinaga, Y., Yamanaka, S., & Takinami, K. (1981). Agricultural and Biological Chemistry, 45, 1419–1424.

    CAS  Google Scholar 

  9. Ema, M., Kakimoto T., & Chibata I. (1979). Applied Enviromental Microbiology. June, 1053–1058.

  10. Tannka, Y., Araki, K., & Nakayama, K. (1980). Journal of Fermentation Technology, 58, 163–169.

    Google Scholar 

  11. Chistoserdova, L. V., & Lidstrom, M. E. (1994). Journal of Bacteriology, 176, 1957–1968.

    CAS  Google Scholar 

  12. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). New York: Cold Spring Harbor.

  13. Figurski, D., & Helinski, D. R. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76, 1648–1652. doi:10.1073/pnas.76.4.1648.

    Article  CAS  Google Scholar 

  14. Tang, J. L., Gough, C. L., Barber, C. E., Dow, J. M., & Daniels, M. J. (1987). Molecular & General Genetics, 210, 443–448. doi:10.1007/BF00327195.

    Article  CAS  Google Scholar 

  15. Fulton, G. L., Nunn, D. N., & Lidstrom, M. E. (1984). Journal of Bacteriology, 160, 718–723.

    CAS  Google Scholar 

  16. Ausuble, F. M., Brent, R., & Kingston, R. E. (1999). Short protocols in molecular biology (9th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  17. Zuo, Z. Y., Zheng, Z. L., Liu, Z. G., et al. (2007). Enzyme and Microbial Technology, 40, 569–577. doi:10.1016/j.enzmictec.2006.05.018.

    Article  CAS  Google Scholar 

  18. Ou, Q., Wei, D., & Wu, B. (2006). Amino Acids & Biotic Resources, 28, 41–44.

    Google Scholar 

  19. Feng, M. Q., Cao, X., & Lu, Y. H. (2000). Amino Acids & Biotic Resources, 22, 41–44.

    Google Scholar 

  20. Fu, J. H., Cui, C. S., Xie, Y. Q., & Li, C. H. (2004). Xinjiang Agricultural Sciences, 41, 169–172.

    Google Scholar 

  21. Chan, V. L. (1988). Gene, 73, 185–191. doi:10.1016/0378-1119(88)90324-1.

    Article  CAS  Google Scholar 

  22. Michael, D. P., & George, V. S. (1989). Journal of Bacteriology, 171, 4958–4962.

    Google Scholar 

  23. Miyata, A., Oshida, T., Yamaguchi, K., Yokoyama, C., Tanabe, T., Toh, H., et al. (1993). European Journal of Biochemistry, 212, 745–750. doi:10.1111/j.1432-1033.1993.tb17713.x.

    Article  CAS  Google Scholar 

  24. Girgis, S. (1998). Gene, 210, 315–324. doi:10.1016/S0378-1119(98)00085-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, P., Chao, H., Jiang, C. et al. Enhancing Production of l-Serine by Increasing the glyA Gene Expression in Methylobacterium sp. MB200. Appl Biochem Biotechnol 160, 740–750 (2010). https://doi.org/10.1007/s12010-009-8551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8551-x

Keywords

Navigation