Skip to main content
Log in

Mobilization and Biodegradation of 2-Methylnaphthalene by Amphiphilic Polyurethane Nano-Particle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Amphiphilic polyurethane (APU) nano-particle enhanced the mobilization of 2-methylnaphthalene (2-MNPT) in soil. Significant increase in the solubility of 2-MNPT was achieved. The molar solubilization ratio was 0.4 (mole 2-MNPT/mole APU). Simple precipitation of APU particle by 2 N CaCl2 recovered 95% of APU particle and 92% of 2-MNPT simultaneously. Also, 2-MNPT, which was entrapped inside the APU particle, was directly degraded by Acinetobacter sp. as same efficiency as without APU particle. These results showed the potentials of APU particle in the mobilization and biodegradation of hydrophobic compounds from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdul, A. S., & Gibson, T. L. (1991). Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material.. Environmental Science & Technology, 25, 665–671. doi:10.1021/es00016a009.

    Article  CAS  Google Scholar 

  2. Uyttebroek, M., Ortega-Calvo, J. J., Breugelmans, P., & Springael, D. (2006). Comparison of mineralization of solid-sorbed phenanthrene by polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium spp. and Sphingomonas spp. Applied Microbiology and Biotechnology, 72, 829–836. doi:10.1007/s00253-006-0337-2.

    Article  CAS  Google Scholar 

  3. Deitsch, J. J., & Smith, J. A. (1995). Effect of Triton X-100 on the rate of trichloroethene desorption from soil to water.. Environmental Science & Technology, 29, 1069–1080. doi:10.1021/es00004a029.

    Article  CAS  Google Scholar 

  4. Edwards, D. A., Luthy, R. G., & Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions.. Environmental Science & Technology, 25, 127–133. doi:10.1021/es00013a014.

    Article  CAS  Google Scholar 

  5. Rairkar, M. E., Hayes, D. G., & Harris, J. M. (2007). Solubilization of enzymes in water-in-oil microemulsions and their rapid and efficient release through use of a pH-degradable surfactant. Biotechnology Letters, 29, 767–771. doi:10.1007/s10529-006-9292-3.

    Article  CAS  Google Scholar 

  6. Fountain, J. C., Klimek, A., Beikirch, M. G., & Middleton, T. M. (1991). The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer.. Journal of Hazardous Materials, 28, 295–311. doi:10.1016/0304-3894(91)87081-C.

    Article  CAS  Google Scholar 

  7. Grimberg, S. J., Miller, C. T., & Aitken, M. D. (1996). Surfactant-enhanced dissolution of phenanthrene into water for laminar flow conditions.. Environmental Science & Technology, 30, 2967–2974. doi:10.1021/es9509285.

    Article  CAS  Google Scholar 

  8. Haley, J. L., Hanson, B., Enfield, C., & Glass, J. (1991). Evaluating the effectiveness of ground water extraction system. Ground Water Monitoring Review, 11, 119–124. doi:10.1111/j.1745-6592.1991.tb00358.x.

    Article  CAS  Google Scholar 

  9. Harwell, J. H. (1992). In D. A. Sabatini, & R. C. Know (Eds.), Transport and remediation of subsurface contaminants;ACS Symposium Series 491. Washington, D.C.: American Chemical Society.

    Google Scholar 

  10. Hasegawa, M. A., Sabatini, D. A., & Harwell, J. H. (1997). Liquid–liquid extraction for surfactant–contaminant separation and surfactant reuse. Journal of Environmental Engineering, 123, 691–697. doi:10.1061/(ASCE)0733-9372(1997)123:7(691).

    Article  CAS  Google Scholar 

  11. Hunt, J. R., Sitar, N., & Udell, K. S. (1988). Nonaqueous phase liquid transport and cleanup I. Analysis of mechanisms.. Water Resources Research, 24, 1247–1358. doi:10.1029/WR024i008p01247.

    Article  CAS  Google Scholar 

  12. Joo, C. S., Oh, Y. S., & Chung, W. J. (2001). Evaluation of bioremediation effectiveness by resolving rate-limiting parameters in diesel-contaminated soil.. Journal of Microbiology and Biotechnology, 11, 607–613.

    CAS  Google Scholar 

  13. Karickhoff, S. W. D., Brown, S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments.. Water Research, 13, 241–2248. doi:10.1016/0043-1354(79)90201-X.

    Article  CAS  Google Scholar 

  14. Kim, E. K., Ahn, I. S., Lion, L. W., & Shuler, M. L. (2001). Enhanced in-situ mobilization and biodegradation of phenanthrene from soil by solvent/surfactant system.. Journal of Microbiology and Biotechnology, 11, 716–719.

    CAS  Google Scholar 

  15. Kim, J. Y., Cohen, C., Shuler, M. L., & Lion, L. W. (2000). Use of amphiphilic polymer particles for in situ extraction of sorbed phenanthrene from a contaminated aquifer material.. Environmental Science & Technology, 34, 4133–4139. doi:10.1021/Es001021w.

    Article  CAS  Google Scholar 

  16. Kim, J. Y., & Cohen, C. (1998). Consequences of structural differences in ionomer networks prepared in different solvents.. Macromolecules, 31, 3542–3550. doi:10.1021/ma9718917.

    Article  CAS  Google Scholar 

  17. Knox, R. C., Sabatini, D. A., Harwell, J. H., Brown, R. E., West, C. C., Blaha, F., & Griffin, C. (1997). Surfactant remediation field demonstration using a vertical circulation well.. Ground Water, 35, 948–953. doi:10.1111/j.1745-6584.1997.tb00166.x.

    Article  CAS  Google Scholar 

  18. Krebbs-Yuill, B. J. H., Harwell, D. A., Sabatini and R. C., Knox. 1995. Surfactant-enhanced subsurface remediation: emerging technologies. ACS Symposium Series 594. Washington, D.C.: American Chemical Society.

  19. Lee, H. S., & Lee, K. S. (2001). Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics.. Journal of Microbiology and Biotechnology, 11, 1038–1045.

    CAS  Google Scholar 

  20. Lee, M. S., Chang, H. W., Kang, H. Y., So, J. S., & Oh, K. H. (2003). Biological removal of explosive 2,4,6-trinitrotoluene by Stenotrophomonas sp. OK-5 in bench-scale bioreactors.. Biotechnology and Bioprocess Engineering, 7, 98–105.

    Google Scholar 

  21. Mackay, D. M., & Cherry, J. A. (1989). Groundwater contamination: pump-and-treat remediation.. Environmental Science & Technology, 23, 630–636. doi:10.1021/es00064a001.

    Article  CAS  Google Scholar 

  22. Magee, B. R., Lion, L. W., & Lemley, A. T. (1991). Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media.. Environmental Science & Technology, 25, 323–331. doi:10.1021/es00014a017.

    Article  CAS  Google Scholar 

  23. McCarthy, J. F., & Zachara, J. M. (1989). Subsurface transport of contaminants. Environmental Science & Technology, 23, 496–502.

    CAS  Google Scholar 

  24. McCray, J. E., & Brusseau, M. L. (1998). Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness.. Environmental Science & Technology, 32, 1285–1293. doi:10.1021/es970579±.

    Article  CAS  Google Scholar 

  25. Means, J. C., Wood, S. G., Hassett, J. J., & Banwart, W. L. (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils.. Environmental Science & Technology, 14, 1524–1528. doi:10.1021/es60172a005.

    Article  CAS  Google Scholar 

  26. Pennell, K. D., Jin, M., Abriola, L. M., & Pope, G. A. (1994). Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene.. Journal of Contaminant Hydrology, 16, 35–53. doi:10.1016/0169-7722(94)90071-X.

    Article  CAS  Google Scholar 

  27. Negm, N. A. (2007). Solubilization, surface active and thermodynamic parameters of gemini amphiphiles bearing nonionic hydrophilic spacers.. Journal of Surfactants and Detergents, 10, 71–80.

    Article  CAS  Google Scholar 

  28. Rouse, J. D., Sabatini, D. A., & Harwell, J. H. (1993). Minimizing surfactant losses using twin-head anionic surfactants in subsurface remediation.. Environmental Science & Technology, 27, 2072–2078. doi:10.1021/es00047a012.

    Article  CAS  Google Scholar 

  29. Shiau, B. J., Sabatini, D., & Harwell, J. H. (1994). Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants.. Ground Water, 32, 561–569. doi:10.1111/j.1745-6584.1994.tb00891.x.

    Article  CAS  Google Scholar 

  30. Taylor, K. C., & Hawkins, B. F. (1991). Emulsions and enhanced oil recovery. In L. L. Schramn (Ed.), Emulsions: fundamentals and applications in petroleum industry. Washington, D.C.: American Chemical Society.

    Google Scholar 

  31. West, C. C., & Harwell, J. H. (1992). Surfactants and subsurface remediation.. Environmental Science & Technology, 26, 2324–2329. doi:10.1021/es00036a002.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Government (MEST) R0A-2007-000-10015-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-ki Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YB., Kim, JY. & Kim, Ek. Mobilization and Biodegradation of 2-Methylnaphthalene by Amphiphilic Polyurethane Nano-Particle. Appl Biochem Biotechnol 159, 1–10 (2009). https://doi.org/10.1007/s12010-009-8550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8550-y

Keywords

Navigation