Skip to main content
Log in

Biotechnological Production of Xylitol: Enhancement of Monosaccharide Production by Post-Hydrolysis of Dilute Acid Sugarcane Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y x/s = 0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y x/s = 0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose–xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sarrouh, B. F., Santos, D. T., & Silva, S. S. (2007). Biotechnology Journal, 2, 759–763. doi:10.1002/biot.200600207.

    Article  CAS  Google Scholar 

  2. Silva, C. J. S. M., Mussatto, S. I., & Roberto, I. C. (2006). Journal of Food Engineering, 75, 115–119. doi:10.1016/j.jfoodeng.2005.04.001.

    Article  CAS  Google Scholar 

  3. Rao, S. R., Jyothi, P. C., Prakasham, R. S., Sarma, P. N., & Rao, V. L. (2006). Bioresource Technology, 97, 1974–1978. doi:10.1016/j.biortech.2005.08.015.

    Article  CAS  Google Scholar 

  4. Rodrigues, R. C. L. B., Felipe, M. G., Almeida e Silva, J. B., & Vitolo, M. (2003). Process Biochemistry, 38, 1231–1237. doi:10.1016/S0032-9592(02)00290-X.

    Article  CAS  Google Scholar 

  5. Kim, J. H., Ryu, Y. W., & Seo, J. H. (1999). Journal of Industrial Microbiology & Biotechnology, 22, 181–186. doi:10.1038/sj.jim.2900626.

    Article  CAS  Google Scholar 

  6. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1996). Biotechnology Letters, 18, 593–598. doi:10.1007/BF00140209.

    Article  Google Scholar 

  7. Silva, S. S., Felipe, M. G. A., & Mancilha, I. M. (1998). Applied Biochemistry and Biotechnology, 70/72, 331–340. doi:10.1007/BF02920149.

    Article  Google Scholar 

  8. du Toit, P. J., Olivier, S. P., & van Bijon, P. L. (1984). Biotechnology and Bioengineering, 26, 1071–1078. doi:10.1002/bit.260260909.

    Article  Google Scholar 

  9. Tsao, G. T., Cao, N., & Gong, C. S. (1999). In Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseperation (vol. 3, pp. 1391–1400). New York: Wiley.

    Google Scholar 

  10. Rivas, B., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2002). Enzyme and Microbial Technology, 31, 431–438. doi:10.1016/S0141-0229(02)00098-4.

    Article  CAS  Google Scholar 

  11. Browning, B. L. (1967). Methods of wood chemistry. New York: Wiley.

    Google Scholar 

  12. Alves, L. A., Felipe, M. G. A., Silva, J. B. A., Silva, S. S., & Prata, A. M. R. (1998). Applied Biochemistry and Biotechnology, 70/72, 89–98. doi:10.1007/BF02920126.

    Article  Google Scholar 

  13. Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., & Lee, H. (1988). Journal of Industrial Microbiology, 3, 241–251. doi:10.1007/BF01569582.

    Article  CAS  Google Scholar 

  14. Rocha, G. J. M. (2000) PhD thesis São Paulo, São Paulo University, Chemical Instittute of São Carlos. (pp 37–38).

  15. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Methods in Enzymology, 299, 152–178. doi:10.1016/S0076-6879(99)99017-1.

    Article  CAS  Google Scholar 

  16. Aguilar, R. J., Ramírez, A., Garrote, G., & Vazquez, M. (2002). Journal of Food Engineering, 55, 309–318. doi:10.1016/S0260-8774(02)00106-1.

    Article  Google Scholar 

  17. Shevchenko, S. M., Chang, K., Robinson, J., & Saddler, J. N. (2002). Bioresource Technology, 72, 207–211. doi:10.1016/S0960-8524(99)00125-X.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank FAPÈSP for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boutros Fouad Sarrouh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarrouh, B.F., de Freitas Branco, R. & da Silva, S.S. Biotechnological Production of Xylitol: Enhancement of Monosaccharide Production by Post-Hydrolysis of Dilute Acid Sugarcane Hydrolysate. Appl Biochem Biotechnol 153, 163–170 (2009). https://doi.org/10.1007/s12010-009-8548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8548-5

Keywords

Navigation