Skip to main content
Log in

Development of Direct Competitive Enzyme-Linked Immunosorbent Assay for the Determination Cadmium Residue in Farm Produce

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cadmium, a toxic heavy metal, poses a significant threat to human health. Currently, the methods for detecting cadmium residue in farm produce need expensive equipment, intensive labor, and much time to finish one detection. In this study, a direct competitive enzyme-linked immunosorbent assay (DC-ELISA) based on a cadmium-chelate-specific monoclonal antibody has been developed. The DC-ELISA showed an IC50 of 2.30 μg/L with a detection limit of 0.20 μg/L for cadmium. The assay has been demonstrated to be highly specific since the monoclonal antibody showed little or no cross-reactivity with all tested metal chelates which include Cd2+, Pb2+, Hg2+, Zn2+, Na+, Ca2+, Fe3+, Mg2+, Mn2+, Cu2+, Al3+, Co2+, Cr2+, Ni2+, Sn2, and K+. The assay showed that a mean recovery ranged from 100.47% to 103.86%, and the coefficients of variations for intra- and inter-assay were 1.73–7.14% and 3.63–6.81%, respectively. Then, several farm produces including wheat flour, apple juice, rice flour, and tea were analyzed for cadmium residue with DC-ELISA and graphite furnace atomic absorption spectroscopy (GFAAS). The correlation coefficient between the DC-ELISA and GFAAS was 0.99. It was demonstrated that the DC-ELISA can be used as a simple and economic method to detect and quantitate cadmium residue in farm produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Musaiger, A. O., Al-Jedah, J. H., & D’souza, R. (2008). Food Control, 19, 854–861. doi:10.1016/j.foodcont.2007.08.011.

    Article  CAS  Google Scholar 

  2. McElroy, J. A., Shafer, M. M., Hampton, J. M., & Newcomb, P. A. (2007). The Science of the Total Environment, 382, 214–223. doi:10.1016/j.scitotenv.2007.04.015.

    Article  CAS  Google Scholar 

  3. Ansari, M. I., & Malik, A. A. (2007). Bioresource Technology, 98, 3149–3153. doi:10.1016/j.biortech.2006.10.008.

    Article  CAS  Google Scholar 

  4. Ceccarini, A., Cecchini, I., & Fuoco, R. (2005). Microchemical Journal, 79, 21–24. doi:10.1016/j.microc.2004.10.020.

    Article  CAS  Google Scholar 

  5. Goltz, D. M., Coombs, J., Marion, C., Cloutis, E., Gibson, J., Attas, M., Choo-Smith, L. P., & Collins, C. (2004). Talanta, 63, 609–616. doi:10.1016/j.talanta.2003.12.010.

    Article  CAS  Google Scholar 

  6. Liu, G. L., Wang, J. F., Li, Z. Y., & Liang, S. Z. (2006). Chinese Journal of Biotechnology, 6, 877–881.

    Google Scholar 

  7. Blake, D. A., Blake II, R. C., Khosraviani, M., & Pavlov, A. R. (1998). Analytica Chimica Acta, 376, 13–19. doi:10.1016/S0003-2670(98)00437-1.

    Article  CAS  Google Scholar 

  8. Khosraviani, M., Pavlov, A. R., Flowers, G. C., & Blake, D. A. (1998). Environmental Science & Technology, 32, 137–142. doi:10.1021/es9703943.

    Article  CAS  Google Scholar 

  9. Zhu, X. X., Xu, L., Lou, Y., Yu, H. N., Blake, D. A., & Liu, F. Q. (2007). Journal of Agricultural and Food Chemistry, 55, 7648–7653. doi:10.1021/jf071025l.

    Article  CAS  Google Scholar 

  10. Darwish, I. A., & Blake, D. A. (2002). Analytical Chemistry, 74, 52–58. doi:10.1021/ac010510r.

    Article  CAS  Google Scholar 

  11. Darwish, I. A., & Blake, D. A. (2001). Analytical Chemistry, 3, 1889–1895. doi:10.1021/ac0012905.

    Article  Google Scholar 

  12. Blake, D. A., Jones, R. M., Blake II, R. C., Pavlov, A. R., Darwish, I. A., & Yu, H. N. (2001). Biosensors & Bioelectronics, 16, 799–809. doi:10.1016/S0956-5663(01)00223-8.

    Article  CAS  Google Scholar 

  13. Delehanty, J. B., Jones, R. M., Bishop, T. C., & Blake, D. A. (2003). Biochemistry, 42, 14173–14183. doi:10.1021/bi034839d.

    Article  CAS  Google Scholar 

  14. Jones, R. M., Yu, H. N., Delehanty, J. B., & Blake, D. A. (2002). Bioconjugate Chemistry, 13, 408–415. doi:10.1021/bc0155418.

    Article  CAS  Google Scholar 

  15. Blake II, R. C., Delehanty, J. B., Khosraviani, M., Yu, H. N., Jones, R. M., & Blake, D. A. (2003). Biochemistry, 42, 497–508. doi:10.1021/bi0267339.

    Article  CAS  Google Scholar 

  16. Khosraviani, M., Blake II, R. C., Pavlov, A. R., Lorbach, S. C., Yu, H. N., Delehanty, J. B., et al. (2000). Bioconjugate Chemistry, 11, 267–277. doi:10.1021/bc9901548.

    Article  CAS  Google Scholar 

  17. Tawarada, K., Sasaki, K., Ohmura, N., Matsumoto, N., & Saiki, H. (2003). The Japan Society for Analytical Chemistry, 52, 583–587.

    CAS  Google Scholar 

  18. Liu, G. L., Wang, J. F., Li, Z. Y., & Liang, S. Z. (2008). Journal of Shanxi University of Science & Technology, 26, 21–26.

    Google Scholar 

Download references

Acknowledgment

This study was supported by the Research Foundation of Science and Technology Plan Project in Guangdong Province of China (grant no. 2003C20409) and Science and Technology Project in General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (grant no. 2004IK062). The authors would like to thank Dr. Hanping Feng for his help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Wang, J., Li, Z. et al. Development of Direct Competitive Enzyme-Linked Immunosorbent Assay for the Determination Cadmium Residue in Farm Produce. Appl Biochem Biotechnol 159, 708–717 (2009). https://doi.org/10.1007/s12010-009-8539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8539-6

Keywords

Navigation