Skip to main content
Log in

A New Aminopeptidase from the Keratin-Degrading Strain Streptomyces fradiae var. k11

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An aminopeptidase gene fragment was isolated from a keratin-degrading strain, Streptomyces fradiae var. k11, by PCR amplification using a degenerate primer set designed based on the partial amino acid sequence of the native enzyme. The gene, designated sfap, encoded a polypeptide of 461 amino acids comprised of three domains: a signal peptide, a mature region, and a C-terminal propeptide. The aminopeptidase, SFAP, had highest amino acid sequence identity (79%) with a putative aminopeptidase from Streptomyces griseus subsp. griseus NBRC 13350. The gene with and without C-terminal propeptide was successfully overexpressed in Escherichia coli BL21 (DE3), and the gene without C-terminal propeptide encoded a functional enzyme. Purified recombinant SFAP exhibited optimal activity at pH 8.0 and 60 °C, and retained >60% peak activity over a broad range of temperature. The enzyme was thermal and pH stable, and showed metalloprotease characteristics, which was inhibited by EDTA but activated by Ca2+ and Co2+. This is the first study to report the gene cloning and expression of a leucine aminopeptidase from S. fradiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jankiewicz, U., & Bielawski, W. (2003). Acta Microbiologica Polonica, 52, 217–231.

    CAS  Google Scholar 

  2. Gonzales, T., & Robert-Baudouy, J. (1996). FEMS Microbiology Reviews, 18, 319–344. doi:10.1111/j.1574-6976.1996.tb00247.x.

    Article  CAS  Google Scholar 

  3. Sanderink, G. J., Artur, Y., & Siest, G. (1988). Journal of Clinical Chemistry and Clinical Biochemistry. Zeitschrift fur Klinische Chemie und Klinische Biochemie, 26, 795–807.

    CAS  Google Scholar 

  4. Taylor, A. (1993). Trends in Biochemical Sciences, 18, 167–172.

    CAS  Google Scholar 

  5. Taylor, A. (1993). The FASEB Journal: official publication of the Federation of American Societies for Experimental Biology, 7, 290–298.

    CAS  Google Scholar 

  6. Sanglier, J. J., Haag, H., Huck, T. A., & Fehr, T. (1993). Research in Microbiology, 144, 633–642. doi:10.1016/0923-2508(93)90066-B.

    Article  CAS  Google Scholar 

  7. Chater, K. F. (1989). Trends in genetics. TIG, 5, 372–377.

    CAS  Google Scholar 

  8. Arima, J., Iwabuchi, M., & Hatanaka, T. (2004). Biochemical and Biophysical Research Communications, 317, 531–538. doi:10.1016/j.bbrc.2004.03.082.

    Article  CAS  Google Scholar 

  9. Ni, S. X., Cossar, D., Man, A., Norek, K., Miller, D., Kearse, C., et al. (2003). Protein Expression and Purification, 30, 62–68. doi:10.1016/S1046-5928(03)00070-6.

    Article  CAS  Google Scholar 

  10. Arima, J., Iwabuchi, M., & Hatanaka, T. (2006). Applied Microbiology and Biotechnology, 70, 541–547. doi:10.1007/s00253-005-0105-8.

    Article  CAS  Google Scholar 

  11. Kim, I. S., Kim, Y. B., & Lee, K. J. (1998). The Biochemical Journal, 331, 539–545.

    CAS  Google Scholar 

  12. Morihara, K., Oka, T., & Tsuzuki, H. (1967). Biochimica et Biophysica Acta, 139, 382–397.

    CAS  Google Scholar 

  13. Li, J., Shi, P., Zhang, W., Han, X., Xu, L., Zhang, H., et al. (2005). Chinese Journal of Biotechnology, 21, 782–788.

    CAS  Google Scholar 

  14. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  15. Prescot, J. M., & Wilkes, S. H. (1976). Methods in Enzymology, 45, 530–543. doi:10.1016/S0076-6879(76)45047-4.

    Article  Google Scholar 

  16. Suzuki, Y., Tsujimoto, Y., Matsui, H., & Watanabe, K. (2006). Journal of Bioscience and Bioengineering, 102, 73–81. doi:10.1263/jbb.102.73.

    Article  CAS  Google Scholar 

  17. Meng, K., Li, J., Cao, Y., Shi, P., Wu, B., Han, X., et al. (2007). Canadian Journal of Microbiology, 53, 186–195. doi:10.1139/W06-122.

    Article  CAS  Google Scholar 

  18. Li, J., Shi, P., Han, X., Meng, K., Yang, P., Wang, Y., et al. (2007). Protein Expression and Purification, 54, 79–86. doi:10.1016/j.pep.2007.02.012.

    Article  CAS  Google Scholar 

  19. Wandersman, C. (1989). Molecular Microbiology, 3, 1825–1831. doi:10.1111/j.1365-2958.1989.tb00169.x.

    Article  CAS  Google Scholar 

  20. Tang, B., Nirasawa, S., Kitaoka, M., & Hayashi, K. (2002). Biochemical and Biophysical Research Communications, 296, 78–84. doi:10.1016/S0006-291X(02)00838-0.

    Article  CAS  Google Scholar 

  21. Tang, B., Nirasawa, S., Kitaoka, M., & Hayashi, K. (2002). Biochimica et Biophysica Acta, 1596, 16–27.

    CAS  Google Scholar 

  22. Zhang, Z., Nirasawa, S., Nakajima, Y., Yoshida, M., & Hayashi, K. (2000). The Biochemical Journal, 350, 671–676. doi:10.1042/0264-6021:3500671.

    Article  CAS  Google Scholar 

  23. Nagy, V., Nampoothiri, K. M., Pandey, A., Rahulan, R., & Szakacs, G. (2008). Journal of Applied Microbiology, 104, 380–387.

    CAS  Google Scholar 

  24. Spungin, A., & Blumberg, S. (1989). European Journal of Biochemistry, 183, 471–477. doi:10.1111/j.1432-1033.1989.tb14952.x.

    Article  CAS  Google Scholar 

  25. Ben-Meir, D., Spungin, A., Ashkenazi, R., & Blumberg, S. (1993). European Journal of Biochemistry, 212, 107–112. doi:10.1111/j.1432-1033.1993.tb17639.x.

    Article  CAS  Google Scholar 

  26. Arima, J., Uesugi, Y., Uraji, M., Yatsushiro, S., Tsuboi, S., Iwabuchi, M., et al. (2006). The Journal of Biological Chemistry, 281, 5885–5894. doi:10.1074/jbc.M509025200.

    Article  CAS  Google Scholar 

  27. Arima, J., Uesugi, Y., Uraji, M., Iwabuchi, M., & Hatanaka, T. (2006). FEBS Letters, 580, 912–917. doi:10.1016/j.febslet.2006.01.014.

    Article  CAS  Google Scholar 

  28. Lin, L., Park, H. I., & Ming, L. (1997). Journal of Biological Inorganic Chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry, 2, 744–749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National High Technology Research and Development Program (863 Program, Grant No. 2007AA100601) and National Key Technology R&D Program of China (No. 2006BAD12B05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Shi, P., Li, J. et al. A New Aminopeptidase from the Keratin-Degrading Strain Streptomyces fradiae var. k11. Appl Biochem Biotechnol 160, 730–739 (2010). https://doi.org/10.1007/s12010-009-8537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8537-8

Keywords

Navigation