Skip to main content
Log in

Structural Characterization of Lipopeptides from Brevibacillus brevis HOB1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Brevibacillus brevis HOB1 was isolated from the formation water of an oil field and found to produce lipopeptides. The separation of lipopeptides was successfully achieved by reversed-phase high-performance liquid chromatography (HPLC) leading to nine separated peaks. The chemical structures of these lipopeptides were studied by means of electrospray ionization mass spectrometry (ESI-MS), gas chromatography-mass spectrometry (GC/MS), HPLC and electrospray ionization tandem mass spectrometry (ESI-MS/MS). As the results, all the lipopeptides had peptide parts with the same amino acid composition of Asp, Glu, Val, and Leu in the molar ratio 1:1:1:4, while the lipid part was composed of C13–C15β-hydroxy fatty acids. As the sequence of fraction 1 was determined to be N-Glu-Leu-Leu-Val-Asp-Leu-Leu-C, the same as surfactin, they were proposed to be surfactin isoforms. Fraction 4 (C15 surfactin) exhibited a good surface activity of 26.8 mN/m with CMC of 9 × 10−6 M. Surfactin is a powerful biosurfactant possessing biological activities. As far as we know, Br. brevis is a new surfactin-producing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Journal of Bioscience and Bioengineering, 94, 187–201. doi:10.1263/jbb.94.187.

    Article  CAS  Google Scholar 

  2. Lin, S. C. (1996). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 66, 109–120. doi:10.1002/(SICI)1097-4660(199606)66:2≤109::AID-JCTB477≥3.0.CO;2-2.

    Article  CAS  Google Scholar 

  3. Rosenberg, E., & Ron, E. Z. (1999). Applied Microbiology and Biotechnology, 52, 154–162. doi:10.1007/s002530051502.

    Article  CAS  Google Scholar 

  4. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508. doi:10.1007/s002530051648.

    Article  CAS  Google Scholar 

  5. Zajic, J. E., Gignard, H., & Gerson, D. F. (1977). Biotechnology and Bioengineering, 91, 1303–1320. doi:10.1002/bit.260190905.

    Article  Google Scholar 

  6. Atlas, R. M. (1993). Oceanus, 36, 71–81.

    Google Scholar 

  7. Miller, R. M. (1995). Environmental Health Perspectives, 103, 59–61. doi:10.2307/3432014.

    Article  CAS  Google Scholar 

  8. Mulligan, C. N. (2005). Environmental Pollution, 133, 183–198. doi:10.1016/j.envpol.2004.06.009.

    Article  CAS  Google Scholar 

  9. Atlas, R. M., & Bartha, R. (1992). Advances in Microbial Ecology, 12, 287–338.

    CAS  Google Scholar 

  10. Jenneman, G. E., McInerney, M. J., Knapp, R. M., Clark, J. B., Feero, J. M., Revus, D. E., & Menzie, D. E. (1983). Dev. Ind. Microbiol, 24, 485–492.

    CAS  Google Scholar 

  11. Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Biotechnology Advances, 25, 99–121. doi:10.1016/j.biotechadv.2006.10.004.

    Article  CAS  Google Scholar 

  12. Klekner, V., & Kosaric, N. (1993). In Biosurfactants: Production, Properties, Applications, Biosurfactants for cosmetics. (Kosaric, N., ed.), Marcel Dekker Inc, New York, NY, pp. 329–372.

  13. Georgiou, G., Lin, S. C., & Sharma, M. M. (1992). Bio/Technology, 10, 60–65. doi:10.1038/nbt0192-60.

    Article  CAS  Google Scholar 

  14. Kameda, Y., Oira, S., Matsui, K., Kanatomo, S., & Hase, T. (1974). Chemical & Pharmaceutical Bulletin, 22, 938–944.

    CAS  Google Scholar 

  15. Muhlradt, P. F., Kiess, M., Meyer, H., Sussmuth, R., & Jung, G. (1997). The Journal of Experimental Medicine, 185, 1951–1958. doi:10.1084/jem.185.11.1951.

    Article  CAS  Google Scholar 

  16. Bernheimer, A. W., & Avigad, L. S. (1970). Journal of General Microbiology, 61, 361–369.

    CAS  Google Scholar 

  17. Arima, K., Kakinuma, A., & Tamura, G. (1968). Biochemical and Biophysical Research Communications, 31, 488–494. doi:10.1016/0006-291X(68)90503-2.

    Article  CAS  Google Scholar 

  18. Besson, F., Peypoux, F., Michel, G., & Delcambe, L. (1976). The Journal of Antibiotics, 29, 1043–1049.

    CAS  Google Scholar 

  19. Vanittanakom, V., Loeffler, W., Koch, U., & Jung, G. (1986). The Journal of Antibiotics, 39, 888–901.

    CAS  Google Scholar 

  20. Yakimov, M. M., Timmis, K. N., Wray, V., & Fredrickson, H. L. (1995). Applied and Environmental Microbiology, 61, 1706–1713.

    CAS  Google Scholar 

  21. Lin, S. C., Minton, M. A., Sharma, M. M., & Georgiou, G. (1994). Applied and Environmental Microbiology, 60, 31–38.

    CAS  Google Scholar 

  22. Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., & Imanaka, T. (1993). Journal of Bacteriology, 175, 6459–6466.

    CAS  Google Scholar 

  23. Haddad, N.I.A., Wang, J., & Mu, B.Z. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 1597–1604.

    Article  CAS  Google Scholar 

  24. Yang, Q., Sun, L. G., Bai, X. Z., & Zhou, H. T. (2002). Chinese. Journal of Chromatography. A, 20, 369–371.

    CAS  Google Scholar 

  25. Haddad, N. I. A., Liu, X. Y., Yang, S. Z., & Mu, B. Z. (2008). Protein and Peptide Letters, 15, 265–269. doi:10.2174/092986608783744225.

    Article  CAS  Google Scholar 

  26. Hosono, K., & Suzuki, H. (1983). The Journal of Antibiotics, 36, 667–673.

    CAS  Google Scholar 

  27. Peypoux, F., Bonmatin, J. M., Labbe, H., Das, B. C., Ptak, M., & Michel, G. (1991). European Journal of Biochemistry, 202, 101–106. doi:10.1111/j.1432-1033.1991.tb16349.x.

    Article  CAS  Google Scholar 

  28. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Applied Microbiology and Biotechnology, 51, 553–563. doi:10.1007/s002530051432.

    Article  CAS  Google Scholar 

  29. Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., & Ziessow, D. (1998). Journal of Colloid and Interface Science, 204, 1–8. doi:10.1006/jcis.1998.5558.

    Article  CAS  Google Scholar 

  30. Batrakov, S. G., Rodionova, T. A., Esipov, S. E., Polyakov, N. B., Sheichenko, V. I., Shekhovtsova, N. V., Lukin, S. M., Panikov, N. S., & Nikolaev, Y. A. (2003). Biochimica et Biophysica Acta, 1634, 107–115.

    CAS  Google Scholar 

  31. Yang, S. Z., Wei, D. Z., & Mu, B. Z. (2006). Journal of Biochemical and Biophysical Methods, 68, 69–74. doi:10.1016/j.jbbm.2006.03.008.

    Article  CAS  Google Scholar 

  32. Liu, X. Y., Yang, S. Z., & Mu, B. Z. (2008). Journal of Peptide Science, 14, 864–875. doi:10.1002/psc.1017.

    Article  CAS  Google Scholar 

  33. Liu, X. Y., Haddad, N. I. A., Yang, S. Z., & Mu, B. Z. (2007). Protein and Peptide Letters, 14, 766–773.. doi:10.2174/092986607781483642.

    Article  CAS  Google Scholar 

  34. Kakinuma, A., Hori, M., Isono, M., Tamura, G., & Arima, K. (1969). Agricultural and Biological Chemistry, 33, 971–972.

    CAS  Google Scholar 

  35. Kakinuma, A., Hori, M., Sugino, H., Yoshida, I., Isono, M., Tamura, G., & Arima, K. (1969). Agricultural and Biological Chemistry, 33, 1523–1524.

    CAS  Google Scholar 

  36. Tsan, P., Volpon, L., Besson, F., & Lancelin, J. M. (2007). Journal of the American Chemical Society, 129, 1968–1977. doi:10.1021/ja066117q.

    Article  CAS  Google Scholar 

  37. Horowitz, S., & Griffin, W. M. (1991). Journal of Industrial Microbiology & Biotechnology, 7, 45–52.

    CAS  Google Scholar 

  38. Thimon, L., Peyoux, F., Maget-Dana, R., & Michel, G. (1992). Journal of the American Oil Chemists' Society, 69, 92–93. doi:10.1007/BF02635884.

    Article  CAS  Google Scholar 

  39. Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R., & Matsumoto, M. (1995). Colloids and Surfaces. B, Biointerfaces, 4, 341–348. doi:10.1016/0927-7765(94)01183-6.

    Article  CAS  Google Scholar 

  40. Marahiel, M. A., Danders, W., Krause, M., & Kleinkauf, H. (1979). European Journal of Biochemistry, 99, 49–55. doi:10.1111/j.1432-1033.1979.tb13229.x.

    Article  CAS  Google Scholar 

  41. Nakano, M. M., Xia, L. A., & Zuber, P. (1991). Journal of Bacteriology, 173, 5487–5493.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No.50744016), the grant from the Ministry of Science and Technology of China (2007CB707801), and Shanghai Municipal Science and Technology Commission (071607014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Zhong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Haddad, N.I.A., Yang, SZ. et al. Structural Characterization of Lipopeptides from Brevibacillus brevis HOB1. Appl Biochem Biotechnol 160, 812–821 (2010). https://doi.org/10.1007/s12010-009-8536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8536-9

Keywords

Navigation