Advertisement

Cellulosic Films Obtained from the Treatment of Sugarcane Bagasse Fibers with N-methylmorpholine-N-oxide (NMMO)

  • Denise S. RuzeneEmail author
  • Daniel P. Silva
  • António A. Vicente
  • José. A. Teixeira
  • Maria T. Pessoa de Amorim
  • Adilson R. Gonçalves
Article

Abstract

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 °C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.

Keywords

Agro-industrial residue Sugarcane bagasse Cellulose fiber Cellulose film NMMO 

Notes

Acknowledgements

The authors acknowledge the financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, as well as the Fundação para a Ciência e a Tecnologia (FCT) and CEMUP financial support refa REEQ/1062/CTM/2005 and REDE/1512/RME/2005—Fundação para a Ciência e Tecnologia (FCT), Portugal.

References

  1. 1.
    Chegolya, A. S., Grinshpan, D. D., & Burd, E. Z. (1989). Textile Research Journal, 59, 501–506. doi: 10.1177/004051758905900902.CrossRefGoogle Scholar
  2. 2.
    Sun, X. J., Sun, X. F., Sun, R. C., & Su, Y. Q. (2004). Carbohydrate Polymers, 56, 195–204. doi: 10.1016/j.carbpol.2004.02.002.CrossRefGoogle Scholar
  3. 3.
    FAO, Food and Agriculture Organization of the United Nations. (2008) FAOSTAT statistics database. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567 (last updated 21 May 2008).
  4. 4.
    Fengel, D., & Wegener, G. (1989). Wood: Chemistry, ultrastructure, reactions. New York: Walter de Gruyter.Google Scholar
  5. 5.
    Kleinert, T. N. (1974). TAPPI Journal, 57, 99–102.Google Scholar
  6. 6.
    Aziz, S., & Sarkanen, K. (1989). TAPPI Journal, 72, 169–175.Google Scholar
  7. 7.
    Young, R. A., & Akhtar, M. (1998). Environmentally friendly technologies for the pulp and paper industry. New York: Wiley.Google Scholar
  8. 8.
    Gonçalves, A. R., & Ruzene, D. S. (2001). Applied Biochemistry and Biotechnology, 91–93, 63–70. doi: 10.1385/ABAB:91-93:1-9:63.CrossRefGoogle Scholar
  9. 9.
    Gonçalves, A. R., & Ruzene, D. S. (2003). Applied Biochemistry and Biotechnology, 105–108, 195–204. doi: 10.1385/ABAB:105:1-3:195.CrossRefGoogle Scholar
  10. 10.
    Paszner, L., & Cho, H. J. (1989). TAPPI Journal, 72, 135–142.Google Scholar
  11. 11.
    Bendzala, J., & Kokta, B. V. (1995). Wood Science and Technology, 29, 467–479. doi: 10.1007/BF00194205.CrossRefGoogle Scholar
  12. 12.
    Goyal, G. C., Lora, J. H., & Pye, E. K. (1992). TAPPI Journal, 75, 110–116.Google Scholar
  13. 13.
    Fengel, D., & Wegener, G. (1989). Wood chemistry, ultrastructure, reactions. Berlin: Walterde Gruyter.Google Scholar
  14. 14.
    Hon, D. N. S. (1996). Chemical modification of lignocellulosic materials. Boca Raton: CRC.Google Scholar
  15. 15.
    Johnson, D. C. (1985). Solvents for cellulose. In T. P. Nevell & S. H. Zeronian (Eds.), Cellulose chemistry and its applications (pp. 181–201). Chichester: Ellis Horwood.Google Scholar
  16. 16.
    Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., & Holladay, J. E. (2007). Carbohydrate Polymers, 67, 97–103. doi: 10.1016/j.carbpol.2006.04.019.CrossRefGoogle Scholar
  17. 17.
    Fink, H.-P., Weigel, P., Purz, H. J., & Ganster, J. (2001). Progress in Polymer Science, 26, 1473–1524. doi: 10.1016/S0079-6700(01)00025-9.CrossRefGoogle Scholar
  18. 18.
    Rosenau, T., Potthast, A., Sixta, H., & Kosma, P. (2001). Progress in Polymer Science, 26, 1763–1837. doi: 10.1016/S0079-6700(01)00023-5.CrossRefGoogle Scholar
  19. 19.
    Hall, M. E., Horrocks, A. R., & Seddon, H. (1999). Polymer Degradation & Stability, 64, 505–510. doi: 10.1016/S0141-3910(98)00202-X.CrossRefGoogle Scholar
  20. 20.
    Rosenau, T., Hofinger, A., Potthast, A., & Kosma, P. (2003). Polymer, 44, 6153–6158. doi: 10.1016/S0032-3861(03)00663-3.CrossRefGoogle Scholar
  21. 21.
    Ruzene, D. S., Gonçalves, A. R., Teixeira, J. A., & Pessoa De Amorim, M. T. (2007). Applied Biochemistry and Biotechnology, 136–140, 573–582. doi: 10.1007/s12010-007-9080-0.CrossRefGoogle Scholar
  22. 22.
    Browing, B. L. (1963). The chemistry of wood (p. 574). New York: Interscience.Google Scholar
  23. 23.
    TAPPI—Technical Association of the Pulp and Paper Industry. (1985). TAPPI Standard Methods. T, 236, cm-85.Google Scholar
  24. 24.
    TAPPI—Technical Association of the Pulp and Paper Industry. (1982). TAPPI Standard Methods. T, 230, om-82.Google Scholar
  25. 25.
    Rocha, G. J. M. (2000). Ph.D. thesis, São Carlos/Universidade de São Paulo, Brazil.Google Scholar
  26. 26.
    TAPPI—Technical Association of the Pulp and Paper Industry. (1999). TAPPI Standard Methods T, 230, om-99.Google Scholar
  27. 27.
    TAPPI—Technical Association of the Pulp and Paper Industry. (1999). TAPPI Standard Methods. T, 236, om-99.Google Scholar
  28. 28.
    Shatalov, A. A., & Pereira, H. (2005). Bioresource Technology, 96, 865–872. doi: 10.1016/j.biortech.2004.09.005.CrossRefGoogle Scholar
  29. 29.
    Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., & Holladay, J. E. (2007). Carbohydrate Polymers, 67, 97–103. doi: 10.1016/j.carbpol.2006.04.019.CrossRefGoogle Scholar
  30. 30.
    Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Vibrational Spectroscopy, 36, 23–40. doi: 10.1016/j.vibspec.2004.02.003.CrossRefGoogle Scholar
  31. 31.
    Wielage, B., Lampke, T., Marx, G., Nestler, K., & Starke, D. (1999). Thermochimica Acta, 337, 169–177. doi: 10.1016/S0040-6031(99)00161-6.CrossRefGoogle Scholar
  32. 32.
    Ghetti, P., Ricca, L., & Angelini, L. (1996). Fuel, 75, 565–573. doi: 10.1016/0016-2361(95)00296-0.CrossRefGoogle Scholar
  33. 33.
    Shafizadeh, F., & DeGroot, W. (1976). Combustion characteristics of cellulose fuels. In F. Shafizadeh, K. V. Sarkanen, & D. A. Tillman (Eds.), Thermal uses and properties of carbohydrates and lignins. New York: Academic.Google Scholar
  34. 34.
    Hornsby, P. R., Hinrichsen, E., & Tarverdi, K. (1997). Journal of Materials Science, 32, 443–449. doi: 10.1023/A:1018521920738.CrossRefGoogle Scholar
  35. 35.
    Devallencourt, C., Saiter, J. M., & Capitaine, D. (1996). Polymer Degradation & Stability, 52, 327–334. doi: 10.1016/0141-3910(95)00239-1.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Denise S. Ruzene
    • 1
    • 2
    Email author
  • Daniel P. Silva
    • 2
  • António A. Vicente
    • 2
  • José. A. Teixeira
    • 2
  • Maria T. Pessoa de Amorim
    • 3
  • Adilson R. Gonçalves
    • 1
  1. 1.Department of Biotechnology, Engineering School of LorenaUniversity of São PauloLorenaBrazil
  2. 2.IBB—Institute for Biotechnology and Bioengineering, Center of Biological EngineeringUniversity of MinhoBragaPortugal
  3. 3.Department of Textile Engineering, Center of Science and Textile TechnologyUniversity of MinhoGuimarãesPortugal

Personalised recommendations