Skip to main content
Log in

Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, hexavalent chromium (Cr(VI)) reduction potential of chromium reductase associated with the cell-free extracts (CFE) of Arthrobacter rhombi-RE species was evaluated. Arthrobacter rhombi-RE, an efficient Cr(VI) reducing bacterium, was enriched and isolated from a chromium-contaminated site. Chromium reductase activity of Arthrobacter rhombi-RE strain was associated with the cell-free extract and the contribution of extracellular enzymes to Cr(VI) reduction was negligible. NADH enhanced the chromium reductase activity. The enzyme activity was optimal at a pH of 5.5 and a temperature of 30 °C. Among the ten electron donors screened, sodium pyruvate was the most effective one followed by NADH and propionic acid. Michaelis–Menten constant, K m, and maximum reaction rate, V max, obtained from the Lineweaver–Burk plot were 48 μM and 4.09 nM/mg protein/min, respectively, in presence of NADH as electron donor and 170.5 μM and 4.29 nM/mg protein/min, respectively, in presence of sodium pyruvate as electron donor. Ca2+ enhanced the enzyme activity while Hg2+, Cd2+, Ba2+, and Zn2+ inhibited the enzyme activity. Among the various immobilization matrices screened, calcium alginate beads seemed to be the most effective one. Though immobilized enzyme system was able to reduce Cr(VI), the performance was not very encouraging in continuous mode of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alves, M. M., Ceca, C. G. G., Carvalho, R. G. D., Castanheira, J. M., Periera, M. C. S., & Vasconcelos, L. A. T. (1993). Water Research, 27, 1333–1338. doi:10.1016/0043-1354(93)90220-C.

    Article  CAS  Google Scholar 

  2. Shen, H., & Wang, Y. T. (1993). Applied and Environmental Microbiology, 59, 3771–3777.

    CAS  Google Scholar 

  3. Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250. doi:10.1021/bp00033a001.

    Article  CAS  Google Scholar 

  4. Philip, L., Iyengar, L., & Venkobachar, C. (1998). Journal of Environmental Engineering, 124, 1165–1170. doi:10.1061/(ASCE)0733-9372(1998)124:12(1165).

    Article  CAS  Google Scholar 

  5. Guha, H., Jayachandran, K., & Maurrasse, F. (2001). Environmental Pollution, 115, 209–218. doi:10.1016/S0269-7491(01)00108-7.

    Article  CAS  Google Scholar 

  6. Schmieman, E. A., Yonge, D. R., Rege, M. A., Petersen, J. N., Turick, C. E., Johnstone, D. L., et al. (1998). Journal of Environmental Engineering, 124, 449–455. doi:10.1061/(ASCE)0733-9372(1998)124:5(449).

    Article  CAS  Google Scholar 

  7. Chirwa, E. N., & Wang, Y. T. (2000). Water Research, 34, 2376–2384. doi:10.1016/S0043-1354(99)00363-2.

    Article  CAS  Google Scholar 

  8. Smith, W. A., Apel, W. A., Petersen, J. N., & Peyton, B. M. (2002). Bioremediation Journal, 6, 205–215. doi:10.1080/10889860290777567.

    Article  CAS  Google Scholar 

  9. Wang, Y., & Xiao, C. (1995). Water Research, 29, 2467–2474. doi:10.1016/0043-1354(95)00093-Z.

    Article  CAS  Google Scholar 

  10. Chen, J. M., & Hao, O. J. (1997). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 69, 70–76. doi:10.1002/(SICI)1097-4660(199705)69:1<70::AID-JCTB665>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  11. Philip, L., Iyengar, L., & Venkobachar, C. (1999). International Journal of Environment and Pollution, 11, 202–210. doi:10.1504/IJEP.1999.002258.

    Article  CAS  Google Scholar 

  12. Chirwa, E. N., & Wang, Y. T. (2001). Water Research, 35(8), 1921–1932. doi:10.1016/S0043-1354(00)00472-3.

    Article  Google Scholar 

  13. Dermou, E., Velissariou, A., Xenos, D., & Vayenas, D. V. (2007). Desalination, 211, 156–163. doi:10.1016/j.desal.2006.02.090.

    Article  CAS  Google Scholar 

  14. Zakaria, Z. A., Zakaria, Z., Surif, S., & Ahmad, W. A. (2007). Journal of Hazardous Materials, 148, 164–171. doi:10.1016/j.jhazmat.2007.02.029.

    Article  CAS  Google Scholar 

  15. Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., & Matin, A. (2000). Applied and Environmental Microbiology, 66, 1788–1795. doi:10.1128/AEM.66.5.1788-1795.2000.

    Article  CAS  Google Scholar 

  16. Camargo, F. A., Okeke, B. C., Bento, F. M., & Frankenberger, W. T. (2003). Applied Microbiology and Biotechnology, 62, 569–573. doi:10.1007/s00253-003-1291-x.

    Article  CAS  Google Scholar 

  17. Megharaj, M., Avudainayagam, S., & Naidu, R. (2004). Current Microbiology, 47, 51–54. doi:10.1007/s00284-002-3889-0.

    Article  Google Scholar 

  18. Bae, W. C., Lee, H. K., Choe, Y. C., Jahng, D. J., Lee, S. H., Kim, S. J., et al. (2005). Journal of Microbiology (Seoul, Korea), 43, 21–27.

    CAS  Google Scholar 

  19. Elangovan, R., Abipsha, S., Rohit, B., Philip, L., & Chandraraj, K. (2006). Biotechnology Letters, 28(4), 247–252. doi:10.1007/s10529-005-5526-z.

    Article  CAS  Google Scholar 

  20. Pal, A., Dutta, S., & Paul, A. K. (2005). Current Microbiology, 51, 327–330. doi:10.1007/s00284-005-0048-4.

    Article  CAS  Google Scholar 

  21. Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Biodegradation, 9, 133–141. doi:10.1023/A:1008358816529.

    Article  CAS  Google Scholar 

  22. McLean, J., & Beveridge, T. J. (2001). Applied and Environmental Microbiology, 67, 1076–1084. doi:10.1128/AEM.67.3.1076-1084.2001.

    Article  CAS  Google Scholar 

  23. White, C. A., & Kennedy, J. F. (1985). In A. Wiseman (Ed.), Handbook of enzyme biotechnology pp. 147–380. Chichester: Horwood.

    Google Scholar 

  24. Munjal, N., & Sawhney, S. K. (2002). Enzyme and Microbial Technology, 30, 613–619. doi:10.1016/S0141-0229(02)00019-4.

    Article  CAS  Google Scholar 

  25. Mabbett, A. N., Yong, P., Farr, J. P. G., & Macaskie, L. E. (2004). Biotechnology and Bioengineering, 87, 104–109. doi:10.1002/bit.20105.

    Article  CAS  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  27. APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  28. Lovley, D. R., & Phillips, E. J. P. (1994). Applied and Environmental Microbiology, 60, 726–728.

    CAS  Google Scholar 

  29. Ishibashi, Y., Cervantes, C., & Silver, S. (1990). Applied and Environmental Microbiology, 56, 2268–2270.

    CAS  Google Scholar 

  30. Campos, J., Martinez-Pacheco, M., & Cervantes, C. (1995). Antonie Van Leeuwenhoek, 68, 203–208. doi:10.1007/BF00871816.

    Article  CAS  Google Scholar 

  31. Bopp, L. H., & Ehrlich, H. L. (1988). Archives of Microbiology, 150, 426–431. doi:10.1007/BF00422281.

    Article  CAS  Google Scholar 

  32. Wang, P. C., Mori, T., Toda, K., & Ohtake, H. (1990). Journal of Bacteriology, 172, 1670–1672.

    CAS  Google Scholar 

  33. Wang, P., Mori, T., Komori, K., Sasatsu, M., Toda, K., & Ohtake, H. (1989). Applied and Environmental Microbiology, 55, 1665–1669.

    CAS  Google Scholar 

  34. Bhinde, J. V., Dhakephalkar, P. K., & Paknikar, K. M. (1996). Biotechnology Letters, 18, 667–672. doi:10.1007/BF00130763.

    Article  Google Scholar 

  35. Farrell, S. O., & Ranallo, R. T. (2000). Experiments in biochemistry. a hands-on approach. Orlando: Saunders College Publications.

    Google Scholar 

  36. Losi, M. E., Amrhein, C., & Frankenberger, W. T. (1994). Reviews of Environmental Contamination and Toxicology, 36, 91–121.

    Google Scholar 

  37. Camargo, F. A., Bento, F. M., Okeke, B. C., & Frankenberger, W. T. (2004). Biological Trace Element Research, 97, 183–194. doi:10.1385/BTER:97:2:183.

    Article  CAS  Google Scholar 

  38. Hiraoka, B. Y., Fukasawa, K., & Harada, M. (1987). Molecular and Cellular Biochemistry, 73, 111–115. doi:10.1007/BF00219425.

    Article  CAS  Google Scholar 

  39. Kwak, Y. H., Lee, D. S., & Kim, H. B. (2003). Applied and Environmental Microbiology, 69, 4390–4395. doi:10.1128/AEM.69.8.4390-4395.2003.

    Article  CAS  Google Scholar 

  40. Opperman, D. J., Piater, L. A., & Heerden, E. V. (2008). Journal of Bacteriology, 8, 3076–3082.

    Article  Google Scholar 

  41. Birke, R. L., & Lombardi, J. R. (1988). In R. J. Gale (Ed.), Surface enhanced Raman scattering in spectroelectrochemistry: theory and practice. Plenum, New York.

  42. Longo, M. A., Novella, I. S., García, L. A., & Díaz, M. (1992). Enzyme and Microbial Technology, 14, 586–590. doi:10.1016/0141-0229(92)90131-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligy Philip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elangovan, R., Philip, L. & Chandraraj, K. Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE . Appl Biochem Biotechnol 160, 81–97 (2010). https://doi.org/10.1007/s12010-008-8515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8515-6

Keywords

Navigation