Skip to main content
Log in

Characterization of a Newly Isolated Biphenyl-Degrading Bacterium, Dyella ginsengisoli LA-4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel biphenyl-degrading bacterium, Dyella ginsengisoli LA-4 was isolated from activated sludge. This isolate could utilize biphenyl as sole source of carbon and energy. The resting cells of strain LA-4 could utilize 100 mg/L biphenyl within 20 h, and they were able to degrade 500 mg/L biphenyl within 40 h. The surfactant, Tween 80, could accelerate the biodegradation process. The increase of NaCl concentration inhibited the biphenyl degradation. No biphenyl degradation was detected when the NaCl concentration exceeds 10%. The effects of metal ions on biphenyl degradation were investigated. The results indicated that metal ions such as Cu2+, Mn2+, and Co2+ could completely inhibit the biodegradation of biphenyl, but Mg2+, Ca2+, and Zn2+ had no effects on the degradation of biphenyl. The removal rate was about 64% and 37% in the presence of Fe3+ and Ni2+, respectively. This study suggested that strain LA-4 could be widely used for bioremediation of soil and wastewater contaminated by biphenyl, NaCl, and metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Furukawa, K., Hikaru, S., & Masatoshi, G. (2004). Biphenyl dioxygenases: Functional versatilities and directed evolution. Journal of Bacteriology, 186, 5189–5196. doi:10.1128/JB.186.16.5189-5196.2004.

    Article  CAS  Google Scholar 

  2. Moody, J. D., Doerge, D. R., Freeman, J. P., & Cerniglia, C. E. (2002). Degradation of biphenyl by Mycobacterium sp. strain PYR-1. Applied Microbiology and Biotechnology, 58, 364–369. doi:10.1007/s00253-001-0878-3.

    Article  CAS  Google Scholar 

  3. Hawley, G. G. (1971). Condensed chemical dictionary p. 322. Van Nostrand Reinhold: New York.

    Google Scholar 

  4. Weaver, W. C., Simmons, P. B., & Thompson, Q. E. (1979). Diphenyl and terphenyls (pp. 782–793). Wiley: New York.

    Google Scholar 

  5. Lunt, D., & Evans, W. C. (1970). The microbial metabolism of biphenyl. The Biochemical Journal, 118, 54–55.

    Google Scholar 

  6. Catelani, D., Mosselmans, G., Nienhaus, J., Sorlini, C., & Treccani, V. (1970). Microbial degradation of aromatic hydrocarbons used as reactor coolants. Experientia, 26, 922–923. doi:10.1007/BF02114264.

    Article  CAS  Google Scholar 

  7. Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191. doi:10.1007/s00253-004-1810-4.

    Article  CAS  Google Scholar 

  8. Abdul, A. S., Gibson, T. L., Ang, C. C., Smith, J. C., & Sobczynski (1992). In situ surfactant washing of polychlorinated biphenyls and oil from a contaminated site. Ground Water, 30, 219–231. doi:10.1111/j.1745-6584.1992.tb01794.x.

    Article  CAS  Google Scholar 

  9. Edwards, D. A., Adeel, A., & Luthy, R. G. (1994). Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science & Technology, 28, 1550–1560. doi:10.1021/es00057a027.

    Article  CAS  Google Scholar 

  10. US Environmental Protection Agency (1992). The superfund innovative technology evaluation program: Technology profiles. Report EPA/540/R-92/077 (5th ed.). Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  11. Laha, S., & Luthy, R. G. (1991). Inhibition of phenanthrene mineralization by nonionic surfactants in soil–water systems. Environmental Science & Technology, 25, 1920–1930. doi:10.1021/es00023a013.

    Article  CAS  Google Scholar 

  12. Lajoie, C. A., Layton, A. C., Easter, J. P., Menn, F. M., & Sayler, G. S. (1997). Degradation of nonionic surfactants and polychlorinated biphenyls by recombinant field application vectors. Journal of Industrial Microbiology & Biotechnology, 19, 252–262. doi:10.1038/sj.jim.2900454.

    Article  CAS  Google Scholar 

  13. Ren, Y., Wei, C. H., Wu, C. F., & Li, G. B. (2007). Environmental and biological characteristics of coking wastewater. Acta Scientiae Cirumstantiae, 27, 1094–1100.

    CAS  Google Scholar 

  14. Li, J. H., Lu, Y., Yin, W., Gan, H. H., Zhang, C., Deng, X. L., et al. (2008). Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environmental Monitoring and Assessment, doi:10.1007/s10661-008-0363-x.

  15. Qu, Y. Y., Wang, J., Zhou, J. T., & Xing, L. L. (2005). Decolorization of bromoamine acid by a newly isolated strain of Sphingomonas xenophaga QYY and its resting cells. Biochemical Engineering Journal, 27, 104–109. doi:10.1016/j.bej.2005.08.005.

    Article  CAS  Google Scholar 

  16. Xie, C. H., & Yokota, A. (2005). Dyella japonica gen. nov., sp. nov., a γ-proteobacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 55, 753–756. doi:10.1099/ijs.0.63377-0.

    Article  CAS  Google Scholar 

  17. Kim, B. Y., Weon, H. Y., Lee, K. H., Seok, S. J., Kwon, S. W., Go, S. J., et al. (2006). Dyella yeojuensis sp. nov., isolated from greenhouse soil in Korea. International Journal of Systematic and Evolutionary Microbiology, 56, 2079–2082. doi:10.1099/ijs.0.64175-0.

    Article  CAS  Google Scholar 

  18. An, D. S., Im, W. T., Yang, H. C., Yang, D. C., & Lee, S. T. (2005). Dyella koreensis sp. nov., a {beta}-glucosidase-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 55, 1625–1628. doi:10.1099/ijs.0.63695-0.

    Article  CAS  Google Scholar 

  19. Patist, A., Bhagwat, S. S., Penfield, K. W., Aikens, P., & Shah, D. O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfact Deterg, 3, 53–58. doi:10.1007/s11743-000-0113-4.

    Article  CAS  Google Scholar 

  20. Rouse, J. D., Sabatini, D. A., Suflita, J. M., & Harwell, J. H. (1994). Influence of surfactants on microbial degradation of organic compounds. Critical Reviews in Environmental Science and Technology, 24, 325–370.

    Article  CAS  Google Scholar 

  21. Volkering, F., Breure, A. M., van Andel, J. G., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61, 1699–1705.

    CAS  Google Scholar 

  22. Bochner, B. R., & Savageau, M. A. (1977). Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Applied and Environmental Microbiology, 33, 434–444.

    CAS  Google Scholar 

  23. Bochner, B. R. (1989). Sleuthing out bacterial identities. Nature, 339, 157–158. doi:10.1038/339157a0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 50608011) and State Key Lab of Urban Water Resource and Environment (HIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Qu, Y., Zhou, J. et al. Characterization of a Newly Isolated Biphenyl-Degrading Bacterium, Dyella ginsengisoli LA-4. Appl Biochem Biotechnol 159, 687–695 (2009). https://doi.org/10.1007/s12010-008-8513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8513-8

Keywords

Navigation