Skip to main content
Log in

The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohlmann, K. L., et al. (1996). Advances in Space Research, 18, 251–265. doi:10.1016/0273-1177(95)00815-V.

    Article  CAS  Google Scholar 

  2. Zhang, Y. H., & Lynd, L. R. (2006). Biotechnology and Bioengineering, 94, 888–898. doi:10.1002/bit.20906.

    Article  CAS  Google Scholar 

  3. Wyman, C. E., et al. (2005). Bioresource Technology, 96, 2026–2032. doi:10.1016/j.biortech.2005.01.018.

    Article  CAS  Google Scholar 

  4. Gould, J. M. (1984). Biotechnology and Bioengineering, 26, 46–52. doi:10.1002/bit.260260110.

    Article  CAS  Google Scholar 

  5. Gould, J. M. (1985). Biotechnology and Bioengineering, 27, 225–231. doi:10.1002/bit.260270303.

    Article  CAS  Google Scholar 

  6. Lachenal, D., & Papadopoulos, J. (1988). Cellulose Chemistry and Technology, 22, 537–546.

    CAS  Google Scholar 

  7. Sun, J. X., et al. (2004). Journal of Wood Chemistry and Technology, 24, 239–262. doi:10.1081/WCT-200038170.

    Article  CAS  Google Scholar 

  8. Sun, R. C., et al. (2001). Journal of Applied Polymer Science, 79, 719–732. doi:10.1002/1097-4628(20010124)79:4<719::AID-APP170>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  9. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004) Determination of structural carbohydrates and lignin in biomass. DOE, National Renewable Energy Laboratory.

  10. Selig, M. J., et al. (2008). Bioresource Technology, 99, 4997–5005. doi:10.1016/j.biortech.2007.09.064.

    Article  CAS  Google Scholar 

  11. Himmel, M. E., et al. (1993). Applied Biochemistry and Biotechnology, 39, 213–225. doi:10.1007/BF02918991.

    Article  Google Scholar 

  12. Adney, W. S., et al. (2003). Applications of enzymes to lignocellulosics, (pp. 403–437). Washington: American Chemical Society.

    Google Scholar 

  13. Selig, M. J., et al. (2008). Applied Biochemistry and Biotechnology, 146, 57–68. doi:10.1007/s12010-007-8069-z.

    Article  CAS  Google Scholar 

  14. Sakon, J., et al. (1996). Biochemistry, 35, 10648–10660. doi:10.1021/bi9604439.

    Article  CAS  Google Scholar 

  15. Kristensen, J. B., et al. (2008). Biotechnology for Biofuels, 1, 1–9. doi:10.1186/1754-6834-1-5.

    Article  Google Scholar 

  16. Yang, B., & Wyman, C. E. (2004). Biotechnology and Bioengineering, 86, 88–95. doi:10.1002/bit.20043.

    Article  CAS  Google Scholar 

  17. Selig, M. J., et al. (2007). Biotechnology Progress, 23, 1333–1339. doi:10.1021/bp0702018.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the DOE Office of the Biomass Program. This work was supported by the US Department of Energy under contract no. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Selig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selig, M.J., Vinzant, T.B., Himmel, M.E. et al. The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes. Appl Biochem Biotechnol 155, 94–103 (2009). https://doi.org/10.1007/s12010-008-8511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8511-x

Keywords

Navigation