Skip to main content

Advertisement

Log in

Effect of Heating Strategy on Power Consumption and Performance of a Pilot Plant Anaerobic Digester

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester treating chicken litter, under thermophilic conditions, has been studied. Heating strategy was evaluated using three different spans (0.2 °C, 0.6 °C, and 1.0 °C) for triggering the temperature control system from target temperature (56.7 °C). The hydraulic retention time in the pilot plant digester was in the range of 32 to 37 days, varying the total solids concentration fed from 5% to 6%. The results showed that under the experimental conditions, heating was the most energy-demanding process with 95.5% of the energy used. Increments up to 7.5% and 3.8%, respectively, on mechanical and heating power consumption, were observed as the span, for triggering the temperature control system from target temperature, was increased. Under the experimental conditions studied here, an increment of 30.6% on the global biodigester performance index was observed when a span of 1.0 °C was compared to the one of 0.2 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. El-Mashad, H. M., Zeeman, G., van Loon, W. K. P., Bot, G. P. A., & Lettinga, G. (2004). Bioresource Technology, 95(2), 191–201. doi:10.1016/j.biortech.2003.07.013.

    Article  CAS  Google Scholar 

  2. Leitao, R. C., van Haandel, A. C., Zeeman, G., & Lettinga, G. (2006). Bioresource Technology, 97(9), 1105–1118. doi:10.1016/j.biortech.2004.12.007.

    Article  CAS  Google Scholar 

  3. Bourque, J. -S., Guiot, S. R., & Tartakovsky, B. (2008). Biotechnology and Bioengineering, 100(6), 1115–1121.

    Article  CAS  Google Scholar 

  4. Bombardiere, J., Espinosa-Solares, T., Domaschko, M., & Chatfield, M. (2006). in Proceedings Seventh IWA Conference on Small Water and Wastewater Systems, Mexico City, Mexico.

  5. Lübken, M., Wichern, M., Letsiou, I., Kehl, O., Bischof, F., & Horn, H. (2007). Water Science and Technology, 56(10), 19–28. doi:10.2166/wst.2007.729.

    Article  Google Scholar 

  6. Espinosa-Solares, T., Bombardiere, J., Domaschko, M., Chatfield, M., Stafford, D. A., Castillo-Angeles, S., et al. (2006). Applied Biochemistry and Biotechnology, 129–132, 959–968.

    Google Scholar 

  7. Shigematsu, T., Tang, Y. Q., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Journal of Bioscience and Bioengineering, 96, 547–558. doi:10.1016/S1389-1723(04)70148-6.

    Article  CAS  Google Scholar 

  8. APHA/AWWA/WEF (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  9. Hach (2004). Hach water analysis handbook (4th ed.). Colorado, USA: Hach Company.

    Google Scholar 

  10. Himmelblau, D. M. (1997). Principios básicos y cálculos en ingeniería química (6th ed.). México City, México: Prentice Hall.

    Google Scholar 

  11. Rao, M. A., & Rizvi, S. S. H. (1986). Engineering properties of foods. New York, USA: Marcel Dekker.

    Google Scholar 

  12. Huang, F. F. (1994). Ingeniería termodinámica. Fundamentos y aplicaciones (2nd ed.). México City, México: CECSA.

    Google Scholar 

  13. Lomas, J. M., Urbano, C., & Camarero, L. M. (1999). Biomass and Bioenergy, 17(1), 49–58. doi:10.1016/S0961-9534(99)00021-5.

    Article  CAS  Google Scholar 

  14. Bohn, I., Björnsson, L., & Mattiasson, B. (2007). Process Biochemistry, 42(1), 57–64. doi:10.1016/j.procbio.2006.07.013.

    Article  CAS  Google Scholar 

  15. Zupančič, G. D., Stražiščar, M., & Roš, M. (2007). Bioresource Technology, 98(14), 2714–2722. doi:10.1016/j.biortech.2006.09.044.

    Article  Google Scholar 

  16. Kim, J. K., Gui Han, H., Oh, B. R., Chun, Y. N., Eom, C. -Y., & Kim, S. W. (2008). Bioresource Technology, 99(10), 4394–4399. doi:10.1016/j.biortech.2007.08.031.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support received from West Virginia State University, Gus R. Douglass Institute’s Agricultural and Environmental Research Station; Consejo Nacional de Ciencia y Technología de México, and the Universidad Autónoma Chapingo, Departamento de Ingeniería Agroindustrial, Mexico. We would also like to acknowledge the following individuals for their contributions: Dr. Mark Chatfield and Scot Shapero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Espinosa-Solares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-Solares, T., Valle-Guadarrama, S., Bombardiere, J. et al. Effect of Heating Strategy on Power Consumption and Performance of a Pilot Plant Anaerobic Digester. Appl Biochem Biotechnol 156, 35–44 (2009). https://doi.org/10.1007/s12010-008-8487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8487-6

Keywords

Navigation