Skip to main content

Advertisement

Log in

Analysis of Relationship Between Microbial and Methanogenic Biomass in Methane Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To analyze the relationship between biomass of microorganisms and methane production, the total biomass of bacteria and archaea (BA) during methane fermentation was analyzed by the environmental DNA analysis method. In the case of using methanogenic sludge as a seed which is generally used for methane fermentation, the total BA biomass reached to 1.5 × 108 to 3.6 × 108 cells/ml when methane was produced. On the other hand, soil suspension was used as a seed; methane was not produced for 14-day cultivation. However, the total BA biomass reached to above 1.5 × 108 cells/ml. The methanogen biomass was counted by using a fluorescence microscope (coenzyme F420), and the methanogen biomass and the ratio of methanogens in the total of BA were analyzed during methane fermentation. At the methane-producing phase, the methanogen biomass reached to 1.3 × 108 cells/ml, and the ratio of methanogens was above 70% of the total BA. When the ratio of methanogens in a seed was changed, the methane-producing phase was moved. However, the relationship between methanogens and other microorganisms at the methane-producing phase was almost similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

Bacteria and archaea

eDNA:

Environmental DNA

DAPI:

4′,6-diamino-2-phenylindole

References

  1. Vogels, G. D., Keltjens, J. T., & van der Drift, C. (1988). Biochemistry of methane production. In A. J. B. Zehnder (Ed.), Biology of anaerobic microorganisms (pp. 707–770). New York: Wiley.

    Google Scholar 

  2. Gunaseelan, V. N. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13, 83–114. doi:10.1016/S0961-9534(97)00020-2.

    Article  CAS  Google Scholar 

  3. McCarty, P. L. (2001). The development of anaerobic treatment and its future. Water Science and Technology, 44, 149–156.

    CAS  Google Scholar 

  4. Nishio, N., & Nakashimada, Y. (2004). High rate production of hydrogen/methane from various substrates and wastes. Advances in Biochemical Engineering/Biotechnology, 90, 63–87.

    CAS  Google Scholar 

  5. Nishio, N., & Nakashimada, Y. (2007). Recent development of anaerobic digestion processes for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103, 105–112. doi:10.1263/jbb.103.105.

    Article  CAS  Google Scholar 

  6. Hobson, P. N., & Wheatley, A. D. (1993). Running and control of digesters. In P. N. Hobson, & A. D. Wheatley (Eds.), Anaerobic digestion (pp. 247–257). London: Elsevier.

    Google Scholar 

  7. Jawed, M., & Tare, V. (1999). Microbial composition assessment of anaerobic biomass through methanogenic activity tests. Water SA, 25, 345–350.

    CAS  Google Scholar 

  8. Goden, J. -J., Zumstein, E., Dabert, P., Habouzit, F., & Moletta, R. (1997). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Applied and Environmental Microbiology, 63, 2802–2813.

    Google Scholar 

  9. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H., & Nakamura, K. (1998). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology, 144, 2655–2665.

    Article  CAS  Google Scholar 

  10. Fernández, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C., et al. (1999). How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 65, 3697–3704.

    Google Scholar 

  11. Tagawa, T., Syutsubo, K., Sekiguchi, Y., Ohashi, A., & Harada, H. (2000). Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Science and Technology, 42, 77–82.

    CAS  Google Scholar 

  12. Zumstein, E., Moletta, R., & Goden, J. -J. (2000). Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology, 2, 69–78. doi:10.1046/j.1462-2920.2000.00072.x.

    Article  CAS  Google Scholar 

  13. Hori, T., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2005). Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. Journal of Microbiological Methods, 66, 165–169. doi:10.1016/j.mimet.2005.11.007.

    Article  CAS  Google Scholar 

  14. Yu, Y., Lee, C., & Hwang, S. (2005). Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Science and Technology, 52, 85–91.

    CAS  Google Scholar 

  15. Jain, M. K., Zeikus, J. G., & Bhatnagar, L. (1991). Methanogens. In P. N. Levett (Ed.), Anaerobic microbiology (pp. 223–245). Oxford: Oxford University Press.

    Google Scholar 

  16. Aoshima, H., Kimura, A., Shibutani, A., Okada, C., Matsumiya, Y., & Kubo, M. (2006). Evaluation of soil bacterial biomass using environmental DNA extracted by slow-stirring method. Applied Microbiology and Biotechnology, 71, 875–880. doi:10.1007/s00253-005-0245-x.

    Article  CAS  Google Scholar 

  17. Mink, R. W., & Dugan, P. R. (1977). Tentative identification of methanogenic bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 713–717.

    Google Scholar 

  18. Ihara, I., & Maekawa, T. (1999). Measurement of methanogenic bacteria by fluorescence coenzyme F420 using image analysis. Nougyou Shisetsu, 30, 247–256 in Japanese.

    Google Scholar 

  19. Harada, H., Ohashi, A., & Imachi, H. (2004). Realization of super high-rate methane fermentation bioreactor and rRNA-based molecular analysis of sludge consortium. Journal of Environmental Biotechnology, 4, 19–27 in Japanese.

    Google Scholar 

  20. Schnurer, A., Schink, B., & Svensson, B. H. (1996). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology, 46, 1145–1152.

    Article  CAS  Google Scholar 

  21. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A., & Harada, H. (2000). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Applied and Environmental Microbiology, 66, 3608–3615. doi:10.1128/AEM.66.8.3608-3615.2000.

    Article  CAS  Google Scholar 

  22. de Bok, F. A. M., Plugge, C. M., & Stams, A. J. M. (2004). Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research, 38, 1368–1375. doi:10.1016/j.watres.2003.11.028.

    Article  CAS  Google Scholar 

  23. Luo, H. -W., Zhang, H., Suzuki, T., Hattori, S., & Kamagata, Y. (2002). Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs. Applied and Environmental Microbiology, 68, 1173–1179. doi:10.1128/AEM.68.3.1173-1179.2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoki Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, K., Ozaki, Y., Matsumiya, Y. et al. Analysis of Relationship Between Microbial and Methanogenic Biomass in Methane Fermentation. Appl Biochem Biotechnol 158, 493–501 (2009). https://doi.org/10.1007/s12010-008-8477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8477-8

Keywords

Navigation