Skip to main content
Log in

Application of Quartz Crystal Nanobalance for Simultaneous Determination of Vanillylmandelic and Homovanillic Acids by a Net Analyte Signal-Based Method

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Homovanillic acid (HVA) and vanillylmandelic acid (VMA) were selectively determined by quartz crystal nanobalance sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including HVA, VMA, and some common and structurally similar urine compounds. The selection of the optimal time range involved the calculation of the NAS regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of predicted error sum of squares value was carried out by applying a moving window strategy. Based on the obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. Several figures of merit like selectivity, sensitivity, analytical sensitivity, and limit of detection were calculated for both compounds. The results showed that the method was successfully applied for the determination of VMA and HVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Young, J. L., Ries, L. G., Silverber, E., Horm, J. W., & Miller, R. W. (1986). Cancer, 58, 598–602. doi:10.1002/1097-0142(19860715)58:2+<598::AID-CNCR2820581332>3.0.CO;2-C.

    Article  Google Scholar 

  2. Schweisguth, O. (1968). Journal of Pediatric Surgery, 3, 118–120. doi:10.1016/0022-3468(68)90993-7.

    Article  CAS  Google Scholar 

  3. Tuchman, M., Morris, C. L., & Ramnaraine, M. L. (1985). Pediatrics, 75, 324–328.

    CAS  Google Scholar 

  4. Pisano, J. J., Crout, J. R., & Abraham, D. (1962). Clinica Chimica Acta, 7, 285–291. doi:10.1016/0009-8981(62)90022-0.

    Article  CAS  Google Scholar 

  5. Radjaipour, M., Raster, H., & Liebich, H. M. (1994). European Journal of Clinical Chemistry and Clinical Biochemistry, 32, 609–613.

    CAS  Google Scholar 

  6. Anderson, G. M., Feibel, F. C., & Cohen, D. J. (1985). Clinical Chemistry, 31, 819–821.

    CAS  Google Scholar 

  7. Issaq, H. J., Delviks, K., Janini, G. M., & Muschik, G. M. (1992). Journal of Liquid Chromatography, 15, 3193–3201. doi:10.1080/10826079208020878.

    Article  CAS  Google Scholar 

  8. Grkovic, S., Nikolic, R., Ðordevic, M., & Stojanov, L. (2005). Indian Journal of Clinical Biochemistry, 20, 178–181. doi:10.1007/BF02867423.

    Article  Google Scholar 

  9. Lau, K. T., Micklefield, J., & Slater, J. M. (1998). Sensors and Actuators. B, Chemical, 50, 69–79. doi:10.1016/S0925-4005(98)00158-0.

    Article  Google Scholar 

  10. Sauerbrey, G. Z. (1959). Zeitschrift für Physik A Hadrons and Nuclei, 155, 206–222. doi:10.1007/BF01337937.

    CAS  Google Scholar 

  11. Mirmohseni, A., & Oladegaragoze, A. (2004). Sensors and Actuators B, 102, 261–270. doi:10.1016/j.snb.2004.04.027.

    Article  Google Scholar 

  12. Mirmohseni, A., & Oladegaragoze, A. (2003). Sensors and Actuators B, 89, 164–172. doi:10.1016/S0925-4005(02)00459-8.

    Article  Google Scholar 

  13. Mirmohseni, A., & Alipour, A. (2002). Sensors and Actuators B, 84, 245–251. doi:10.1016/S0925-4005(02)00032-1.

    Article  Google Scholar 

  14. Mirmohseni, A. Shojaei, M., & Farbodi, M. (2008). Biotechnology and Bioprocess Engineering 13, 592–597.

    Google Scholar 

  15. Shojaei, M. Mirmohseni, A., & Farbodi, M. (2008). Analytical Bioanalytical Chemistry 391, 2875–2880.

  16. Zhu, W., Wei, W., Nie, L., & Yao, S. (1993). Analytica Chimica Acta, 282, 535–541. doi:10.1016/0003-2670(93)80117-4.

    Article  CAS  Google Scholar 

  17. Nyberg, H. (2008). Chemometrics and Intelligent Laboratory Systems, 92, 118–124. doi:10.1016/j.chemolab.2008.01.002.

    Article  CAS  Google Scholar 

  18. Mirmohseni, A., Abdollahi, H., & Rostamizadeh, K. (2007). Analytica Chimica Acta, 585, 179–184. doi:10.1016/j.aca.2006.11.082.

    Article  CAS  Google Scholar 

  19. Lorber, A., Faber, K., & Kowalski, B. R. (1997). Analytical Chemistry, 69, 1620–1626. doi:10.1021/ac960862b.

    Article  CAS  Google Scholar 

  20. Goicoechea, H. C., & Olivieri, A. C. (1999). Analytical Chemistry, 71, 4361–4368. doi:10.1021/ac990374e.

    Article  CAS  Google Scholar 

  21. Espinosa-Mansilla, A., Meras, I. D., Gomez, M. J. R., Munoz de la Pena, A., & Salinas, F. (2002). Talanta, 58, 255–263. doi:10.1016/S0039-9140(02)00243-6.

    Article  CAS  Google Scholar 

  22. Marsili, N. R., Sobrero, M. S., & Goicoechea, H. C. (2003). Analytical and Bioanalytical Chemistry, 376, 126–133.

    CAS  Google Scholar 

  23. Munoz de la Pena, A., Espinosa-Mansilla, A., Acedo Valenzuela, M. I., Goicoechea, H. C., & Olivieri, A. C. (2002). Analytica Chimica Acta, 463, 75–88. doi:10.1016/S0003-2670(02)00373-2.

    Article  CAS  Google Scholar 

  24. Goicoechea, H. C., & Olivieri, A. C. (2000). Trends in Analytical Chemistry, 19, 599–605. doi:10.1016/S0165-9936(00)00045-5.

    Article  CAS  Google Scholar 

  25. Sorenson, W.R. Sweeng, W. Campbell, T.W. (2001). In: Preparative methods of polymer chemistry, vol. 9, Wiley, New York, pp. 274–275.

  26. Mirmohseni, A., Milani, M., & Hassanzadeh, V. (1999). Polymer International, 48, 873–878. doi:10.1002/(SICI)1097-0126(199909)48:9<873::AID-PI236>3.0.CO;2-W.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful for the financial supports of this research project by the University of Tabriz and the Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shojaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, M., Mirmohseni, A., Omidi, Y. et al. Application of Quartz Crystal Nanobalance for Simultaneous Determination of Vanillylmandelic and Homovanillic Acids by a Net Analyte Signal-Based Method. Appl Biochem Biotechnol 159, 54–64 (2009). https://doi.org/10.1007/s12010-008-8464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8464-0

Keywords

Navigation