Skip to main content
Log in

Taxonomic Identification and Use of Free and Entrapped Cells of a New Mycobacterium sp., Strain Spyr1 for Degradation of Polycyclic Aromatic Hydrocarbons (PAHs)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A polycyclic aromatic hydrocarbon (PAH)-degrading bacterial strain Spyr1 was isolated from Greek creosote polluted soil by an enrichment method using pyrene as sole carbon and energy source. Spyr1 was identified as Mycobacterium sp. based on 16S rDNA analysis and it was capable of degrading pyrene, fluoranthene, fluorene, anthracene, and acenaphthene. The effect of entrapment in glass beads and alginate/starch mixtures on the survival and pyrene degradation ability of Spyr1 cells in liquid suspensions and soil microcosms was tested and compared with that of freely suspended cells. In general, free cells showed higher degradation of pyrene and other PAH than immobilized cells. However, immobilized cells could better tolerate PAH and they maintained their viability and PAH degradation capability for at least 1 year after storage at 4 °C. Entrapped cells in glass beads exhibited better pyrene biodegradation performance than alginate/starch entrapped cells in liquid suspensions and could be used effectively for at least ten repeated cycles. Alginate/starch entrapped cells exhibited better yields than glass beads entrapped cells for removing pyrene as well as mixtures of PAH in soil microcosms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanaly, R. A., & Harayama, S. (2000). Journal of Bacteriology, 182, 2059–2067. doi:10.1128/JB.182.8.2059-2067.2000.

    Article  CAS  Google Scholar 

  2. Cerniglia, C. E. (1993). Current Opinion in Biotechnology, 4, 331–338. doi:10.1016/0958-1669(93)90104-5.

    Article  CAS  Google Scholar 

  3. Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Applied and Environmental Microbiology, 67, 2683–2691. doi:10.1128/AEM.67.6.2683-2691.2001.

    Article  CAS  Google Scholar 

  4. Juhasz, A., & Naidu, R. (2000). International Biodeterioration & Biodegradation, 45, 57–88. doi:10.1016/S0964-8305(00)00052-4.

    Article  CAS  Google Scholar 

  5. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Microbiology and Molecular Biology Reviews, 67, 503–549. doi:10.1128/MMBR.67.4.503-549.2003.

    Article  Google Scholar 

  6. Wick, L. Y., Pasche, N., Bernasconi, S. M., Pelz, O., & Harms, H. (2003). Applied and Environmental Microbiology, 69, 6133–6142. doi:10.1128/AEM.69.10.6133-6142.2003.

    Article  CAS  Google Scholar 

  7. Uyttebroek, M., Breugelmans, P., Janssen, M., Wattiau, P., Joffe, B., Karlson, U., et al. (2006). Environmental Microbiology, 8, 836–847. doi:10.1111/j.1462-2920.2005.00970.x.

    Article  CAS  Google Scholar 

  8. Vogel, T. M. (1996). Current Opinion in Biotechnology, 7, 311–316. doi:10.1016/S0958-1669(96)80036-X.

    Article  CAS  Google Scholar 

  9. Widada, J., Nojiri, H., & Omori, T. (2002). Applied Microbiology and Biotechnology, 60, 45–59. doi:10.1007/s00253-002-1072-y.

    Article  CAS  Google Scholar 

  10. Mallory, L. M., Yuk, C. S., & Alexander, M. (1983). Applied and Environmental Microbiology, 46, 1073–1079.

    CAS  Google Scholar 

  11. Murakami, Y., & Alexander, M. (1989). Biotechnology and Bioengineering, 33, 832–838. doi:10.1002/bit.260330706.

    Article  CAS  Google Scholar 

  12. Zouari, H., Labat, M., & Sayadi, S. (2002). Bioresource Technology, 84, 145–150. doi:10.1016/S0960-8524(02)00032-9.

    Article  CAS  Google Scholar 

  13. Quan, C. S., Fan, S. D., & Ohta, Y. (2003). Applied Microbiology and Biotechnology, 62, 41–47. doi:10.1007/s00253-003-1247-1.

    Article  CAS  Google Scholar 

  14. Cassidy, M. B., Lee, H., & Trevors, J. T. (1996). Journal of Industrial Microbiology, 16, 79–101. doi:10.1007/BF01570068.

    Article  CAS  Google Scholar 

  15. Park, J. K., & Chang, H. N. (2000). Biotechnology Advances, 18, 303–319. doi:10.1016/S0734-9750(00)00040-9.

    Article  CAS  Google Scholar 

  16. Wiesel, I., Wubker, S. M., & Rehm, H. J. (1993). Applied Microbiology and Biotechnology, 39, 110–116.

    CAS  Google Scholar 

  17. Weir, S. C., Dupuis, S. P., Providenti, M. A., Lee, H., & Trevors, J. T. (1995). Applied Microbiology and Biotechnology, 43, 946–951. doi:10.1007/BF02431932.

    Article  CAS  Google Scholar 

  18. Manohar, S., & Karegoudar, T. B. (1998). Applied Microbiology and Biotechnology, 49, 785–792. doi:10.1007/s002530051247.

    Article  CAS  Google Scholar 

  19. Kallimanis, A., Frillingos, S., Drainas, C., & Koukkou, A. I. (2007). Applied Microbiology and Biotechnology, 76, 709–717. doi:10.1007/s00253-007-1036-3.

    Article  CAS  Google Scholar 

  20. Jonhson, J. L. (1994). In P. Gerhardt, R. G. E. Murray, A. Willis, & N. R. Krieg (Eds.), Methods for general and molecular bacteriology (pp. 665–666). Washington, DC 20005: ASM.

    Google Scholar 

  21. Smibert, M. R., & Krieg, N. R. (1994). In P. Gerhardt, R. G. E. Murray, A. Willis, & N. R. Krieg (Eds.), Methods for general and molecular bacteriology (pp. 607–654). Washington, DC 20005: ASM.

    Google Scholar 

  22. Stackenbrandt, E., & Liesack, W. (1993). In M. Goodfellow, & A. G. O’ Connell (Eds.), Handbook of new bacterial systematics (pp. 181–183). London: Academic.

    Google Scholar 

  23. Kumar, S., Tamura, K., & Nei, M. (2004). Briefings in Bioinformatics, 5, 150–163. doi:10.1093/bib/5.2.150.

    Article  CAS  Google Scholar 

  24. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680. doi:10.1093/nar/22.22.4673.

    Article  CAS  Google Scholar 

  25. Iwabuchi, T., & Harayama, S. (1998). The Journal of Biological Chemistry, 273, 8332–8336. doi:10.1074/jbc.273.14.8332.

    Article  CAS  Google Scholar 

  26. Yamamoto, S., Katagiri, M., Maeno, H., & Hayaishi, O. (1965). The Journal of Biological Chemistry, 240, 3408–3413.

    CAS  Google Scholar 

  27. Kiyohara, H., & Nagao, K. (1978). Journal of General Microbiology, 105, 69–75.

    CAS  Google Scholar 

  28. Zukofski, M. M., Gaffney, D. F., Speck, D., Kauffmann, M., Findel, A. I., Wisecup, A., et al. (1983). Proceedings of the National Academy of Sciences of the United States of America, 80, 1101–1105. doi:10.1073/pnas.80.4.1101.

    Article  Google Scholar 

  29. Fiamegos, Y. C., & Stalikas, C. D. (2006). Journal of Chromatography. A, 1110, 66–72. doi:10.1016/j.chroma.2006.01.074.

    Article  CAS  Google Scholar 

  30. Bonin, P., Rontani, J. F., & Bordenave, L. (2001). FEMS Microbiology Letters, 194, 111–119. doi:10.1111/j.1574-6968.2001.tb09455.x.

    Article  CAS  Google Scholar 

  31. Patil, N. K., & Karegoudar, T. B. (2005). World Journal of Microbiology & Biotechnology, 21, 1493–1498. doi:10.1007/s11274-005-7369-0.

    Article  CAS  Google Scholar 

  32. Ascon-Cabrera, M. A., Ascon-Reyes, D. B., & Lebeault, J. M. (1995). The Journal of Applied Bacteriology, 79, 617–624.

    CAS  Google Scholar 

  33. Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). International Journal of Food Microbiology, 62, 47–55. doi:10.1016/S0168-1605(00)00380-9.

    Article  CAS  Google Scholar 

  34. Sheu, T. Y., & Marshall, R. T. (1993). Journal of Food Science, 54, 557–561. doi:10.1111/j.1365-2621.1993.tb04323.x.

    Article  Google Scholar 

  35. Zhang, H., Kallimanis, A., Koukkou, A. I., & Drainas, C. (2004). Applied Microbiology and Biotechnology, 65, 124–131. doi:10.1007/s00253-004-1614-6.

    Article  CAS  Google Scholar 

  36. Lotfabad, S. K., & Gray, M. R. (2002). Applied Microbiology and Biotechnology, 60, 361–365. doi:10.1007/s00253-002-1104-7.

    Article  CAS  Google Scholar 

  37. Berbabei, M., Reda, R., Galiero, R., & Bocchinfuso, G. (2003). Journal of Chromatography. A, 985, 197–203. doi:10.1016/S0021-9673(02)01826-5.

    Article  Google Scholar 

  38. Dean-Ross, D., & Cerniglia, C. E. (1996). Applied Microbiology and Biotechnology, 46, 307–312. doi:10.1007/s002530050822.

    Article  CAS  Google Scholar 

  39. Vila, J. Z., Lopez, J., Sabate, C., Minuillon, A., Solanas, M., & Grifoll, M. (2001). Applied and Environmental Microbiology, 67, 5497–5505. doi:10.1128/AEM.67.12.5497-5505.2001.

    Article  CAS  Google Scholar 

  40. Heitkamp, M. A., Franklin, W., & Cerniglia, C. E. (1988). Applied and Environmental Microbiology, 54, 2549–2555.

    CAS  Google Scholar 

  41. Heitkamp, M. A., Freeman, J. P., Miller, D. W., & Cerniglia, C. E. (1988). Applied and Environmental Microbiology, 54, 2556–2565.

    CAS  Google Scholar 

  42. Liang, Y., Gardner, D. R., Miller, C. D., Chen, D., Anderson, A. J., Weimer, B. C., et al. (2006). Applied and Environmental Microbiology, 72, 7821–7828. doi:10.1128/AEM.01274-06.

    Article  CAS  Google Scholar 

  43. Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Journal of Bacteriology, 189, 464–472. doi:10.1128/JB.01310-06.

    Article  CAS  Google Scholar 

  44. Lebeau, T., Moan, R., Turpin, V., & Robert, J. M. (1998). Biotechnology Techniques, 12, 847–850. doi:10.1023/A:1008885222634.

    Article  CAS  Google Scholar 

  45. Dias, J. C. T., Rezende, R. P., & Linardi, V. R. (2001). Applied Microbiology and Biotechnology, 56, 757–761. doi:10.1007/s002530100681.

    Article  CAS  Google Scholar 

  46. Rahman, R. N. Z. A., Ghazali, F. M., Salleh, A. B., & Basri, M. (2006). Journal of Microbiology (Seoul, Korea), 44, 354–359.

    Google Scholar 

  47. Mertens, B., Boon, N., & Verstraete, W. (2006). Applied and Environmental Microbiology, 72, 622–627. doi:10.1128/AEM.72.1.622-627.2006.

    Article  CAS  Google Scholar 

  48. Moslemy, P., Neufeld, R. J., & Guiot, S. (2002). Biotechnology and Bioengineering, 80, 175–184. doi:10.1002/bit.10358.

    Article  CAS  Google Scholar 

  49. Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Environmental Pollution, 133, 71–84. doi:10.1016/j.envpol.2004.04.015.

    Article  CAS  Google Scholar 

  50. Koukkou, A. I., Karabika, E., Kallimanis, A., Dados, A., Pilidis, G., & Drainas, C. A new immobilization method of crude oil degrading microorganisms for processing liquid wastes and soil bioremediations. Industrial Property Organisation, Greece, Application, No. 20070100669.

Download references

Acknowledgments

This work was funded by the Greek Secretariat for Research and Technology (Programme PENED-01ED547). The authors wish to thank Prof. A. Aivasidis from the Department of Environmental Engineering, Faculty of Engineering, Demokritos University of Thrace for providing the macroporous sinter glass (SiranR, Schott Glaswerke).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Koukkou.

Additional information

A. Kallimanis and A. Dados contributed equally to this work.

Appendix

Appendix

A patent application is pending for the immobilization of petroleum-degrading microorganisms for wastewater cleanup and soil remediation (Industrial Property Organisation, Application No. 20070100669) [50].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabika, E., Kallimanis, A., Dados, A. et al. Taxonomic Identification and Use of Free and Entrapped Cells of a New Mycobacterium sp., Strain Spyr1 for Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). Appl Biochem Biotechnol 159, 155–167 (2009). https://doi.org/10.1007/s12010-008-8463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8463-1

Keywords

Navigation