Skip to main content
Log in

Bioremediation of Marine Sediments Impacted by Petroleum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to optimize the bioremediation of crude oil-contaminated sand sediment through the biostimulation technique. The soil was obtained in the mid-tide zone of Guanabara Bay, Rio de Janeiro, Brazil and was artificially contaminated with crude oil at 14 g kg−1. Bioremediation optimization was performed using an experimental design and statistical analysis of the following factors: supplementation with commercial biosurfactant Jeneil® IBR 425 and commercial mineral NPK fertilizer. The response variable used was the biodegradation of the heavy oil fraction, HOF. The analysis of the studied factors and their interactions was executed using contour plots, Pareto diagram and ANOVA table. Experimental design results indicated that the supplementation with fertilizer at 100:25:25 C/N/P ratio and biosurfactant at 2 g kg−1 yielded biodegradation of HOF at about 30% during 30 days of process. Some experiments were carried out using the experimental design results, yielding 65% of biodegradation of HOF and 100% of n- alkanes between C15 and C30 during 60 process days. Intrinsic biodegradation test was carried out, yielding 85% of biodegradation of n-alkanes between C15 and C30 during 30 days of process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu, R., Obbard, J. P., & Tay, E. T. C. (2003). World Journal of Microbiology & Biotechnology, 19, 719–725. doi:10.1023/A:1025116421986.

    Article  CAS  Google Scholar 

  2. NAS-National Academy of Sciences (2003). Oil in the Sea: Inputs, Fates and Effects. Washington DC: National Academy.

    Google Scholar 

  3. Cubitto, M. A., Moran, A. C., Commendatore, M., Chiarello, M. N., Baldini, M. D., & Sineriz, F. (2004). Biodegradation, 15, 281–287. doi:10.1023/B:BIOD.0000042186.58956.8f.

    Article  CAS  Google Scholar 

  4. Prince, R. C., Lessard, R. R., & Clark, J. R. (2003). Oil & Gas Science and Technology, 58, 463–468. doi:10.2516/ogst:2003029.

    Article  CAS  Google Scholar 

  5. Kennish, M. J. (1996). Practical handbook of estuarine and marine pollution. New York: Wiley.

    Google Scholar 

  6. Mills, M. A., Bonner, J. S., McDonald, T. J., Page, C. A., & Autenrieth, R. L. (2003). Marine Pollution Bulletin, 46, 877–889. doi:10.1016/S0025-326X(02)00367-3.

    Article  CAS  Google Scholar 

  7. Zhu, X., Venosa, A. D., Suidan, M. T., & Lee, K. (2001). USEPA., Cincinnati.

  8. Verardo, D. J., Froelich, P. N., & Mcintyre, A. (1990). Deep-Sea Research, 37, 157–165. doi:10.1016/0198-0149(90)90034-S.

    Article  CAS  Google Scholar 

  9. Hedges, J. I., & Stern, J. H. (1984). Limnology and Oceanography, 29, 657–663.

    Article  CAS  Google Scholar 

  10. Hach Company. (1995). 531–538. Hach Company Loveland, CO.

  11. APHA—American Public Health Association. (1992). Standard methods for the examination of water and wastewater. Maryland.

  12. Oblinger, J. L., & Koburger, J. A. (1975). Journal of Milk and Food Technology, 38, 540–545.

    Google Scholar 

  13. Ridgway, H. F., Safarik, J., Phipps, P., Carl, P., & Clark, D. (1990). Applied and Environmental Microbiology, 56, 3565–3575.

    CAS  Google Scholar 

  14. Oliveira, F. J. S., & de França, F. P. (2005). Applied Biochemistry and Biotechnology, 121–124, 593–603. doi:10.1385/ABAB:122:1-3:0593.

    Article  Google Scholar 

  15. Lee, K., Stoffyn-egly, P., Tremblay, G. H., Owens, E. H., Sergy, G. A., Guénette, C. C., et al. (2002). Spill Science & Technology Bulletin, 8, 285–296. doi:10.1016/S1353-2561(03)00042-2.

    Article  CAS  Google Scholar 

  16. Volkering, F., Breure, A. M., & Rulkens, W. H. (1998). Biodegradation, 8, 401–417. doi:10.1023/A:1008291130109.

    Article  CAS  Google Scholar 

  17. Lacotte, D. J., Mille, G., Acquaviva, M., & Bertrand, J. C. (1995). Chemosphere, 31, 4351–4358. doi:10.1016/0045-6535(95)00303-P.

    Article  CAS  Google Scholar 

  18. Atlas, R. M. (1995). International Biodeterioration & Biodegradation, 35, 317–327. doi:10.1016/0964-8305(95)00030-9.

    Article  CAS  Google Scholar 

  19. Alexander, M. (1999). Biodegradation and bioremediation. New York: Academic.

    Google Scholar 

  20. Roling, W. M. F., & Verseveld, H. W. (2002). Biodegradation, 13, 53–64. doi:10.1023/A:1016310519957.

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to Coordenação de Apoio a Pessoal de Nível Superior, CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and Financiadora de Projetos, FINEP, for the financial support. The authors would like to thank Petrobras for providing the Arabian light oil employed in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aike C. da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, A.C., de Oliveira, F.J.S., Bernardes, D.S. et al. Bioremediation of Marine Sediments Impacted by Petroleum. Appl Biochem Biotechnol 153, 58–66 (2009). https://doi.org/10.1007/s12010-008-8457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8457-z

Keywords

Navigation