Skip to main content
Log in

Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ishizaki, A., Michiwaki, S., Crabbe, E., Kobayashi, G., Sonomoto, K., & Yoshino, S. (1999). Journal of Bioscience and Bioengineering, 87, 352–356. doi:10.1016/S1389-1723(99)80044-9.

    Article  CAS  Google Scholar 

  2. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007). Current Opinion in Biotechnology, 18, 220–227. doi:10.1016/j.copbio.2007.04.002.

    Article  CAS  Google Scholar 

  3. Qureshi, N., & Blaschek, H. P. (2001). Bioprocess and Biosystems Engineering, 24, 219–226. doi:10.1007/s004490100257.

    Article  CAS  Google Scholar 

  4. Groot, W. J., van der Lans, R. G. J. M., & Luyben, C. A. M. (1992). Process Biochemistry, 27, 61–75. doi:10.1016/0032-9592(92)80012-R.

    Article  CAS  Google Scholar 

  5. Roffler, S. R., Blanch, H. W., & Wilke, C. R. (1984). Trends in Biotechnology, 2, 129–136. doi:10.1016/0167-7799(84)90022-2.

    Article  CAS  Google Scholar 

  6. Silva, F. L. H., Rodrigues, M. I., & Maugeri Filho, F. (1999). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 74, 176–182. doi:10.1002/(SICI)1097-4660(199902)74:2<176::AID-JCTB995>3.0.CO;2-C.

    Article  Google Scholar 

  7. Costa, A. C., Dechechi, E. C., Silva, F. L. H., Maugeri Filho, F., & Maciel Filho, R. (2000). Applied Biochemistry and Biotechnology, 84, 577–593. doi:10.1385/ABAB:84-86:1-9:577.

    Article  Google Scholar 

  8. Costa, A. C., Atala, D. I. P., Maugeri Filho, F., & Maciel Filho, R. (2001). Process Biochemistry, 37, 125–137. doi:10.1016/S0032-9592(01)00188-1.

    Article  CAS  Google Scholar 

  9. Costa, A. C., & Maciel Filho, R. (2004). Applied Biochemistry and Biotechnology, 114, 485–496. doi:10.1385/ABAB:114:1-3:485.

    Article  Google Scholar 

  10. Andrietta, S. R., & Maugeri Filho, F. (1994). In E. Galindo, & O. T. Ramirez (Eds.), Advances in bioprocess engineering pp. 47–52. The Netherlands: Kluwer.

    Google Scholar 

  11. Kalil, S. J., Maugeri Filho, F., & Rodrigues, M. I. (2000). Process Biochemistry, 35, 539–550. doi:10.1016/S0032-9592(99)00101-6.

    Article  CAS  Google Scholar 

  12. Rivera, E. C., Costa, A. C., Atala, D. I. P., Maugeri Filho, F., Wolf Maciel, M. R., & Maciel Filho, R. (2006). Process Biochemistry, 41, 1682–1687. doi:10.1016/j.procbio.2006.02.009.

    Article  CAS  Google Scholar 

  13. Volesky, B., & Votruba, J. (1992). Modeling and optimization of fermentation process. Amsterdam: Elsevier.

    Google Scholar 

  14. Shi, Z., Zhang, C., Chen, J., & Mao, Z. (2005). Bioprocess and Biosystems Engineering, 27, 175–183. doi:10.1007/s00449-004-0396-7.

    Article  CAS  Google Scholar 

  15. Honda, H., Mano, T., Taya, M., Shimizu, K., Matsubara, M., & Kobayashi, T. (1987). Chemical Engineering Science, 42, 493–498. doi:10.1016/0009-2509(87)80011-8.

    Article  CAS  Google Scholar 

  16. Shukla, R., Kang, W., & Sirkar, K. K. (1989). Biotechnology and Bioengineering, 34, 1158–1166. doi:10.1002/bit.260340906.

    Article  CAS  Google Scholar 

  17. Mulchandani, A., & Volesky, B. (1986). Modelling of the acetone–butanol fermentation with cell retention. Canadian Journal of Chemical Engineering, 64, 625–631.

    Article  CAS  Google Scholar 

  18. Atala, D. I. P. (2004). Ph.D. thesis, School of Food Engineering, University of Campinas, Campinas, Brazil.

  19. Sandler, S. I. (1999). Chemical & engineering thermodynamics (3rd ed.). New York: Wiley.

    Google Scholar 

  20. Costa, C. B. B., & Maciel Filho, R. (2005). Chemical Engineering Science, 60, 5312–5322. doi:10.1016/j.ces.2005.04.068.

    Article  CAS  Google Scholar 

  21. Barros Neto, B., Scariminio, I. S., & Bruns, R. E. (2001). Planejamento e Otimização de experimentos (3rd ed.). Campinas: Editora da Unicamp.

    Google Scholar 

  22. Costa, C. B. B., Costa, A. C., & Maciel Filho, R. (2005). Chemical Engineering Progress, 44, 737–753. doi:10.1016/j.cep.2004.08.004.

    Article  CAS  Google Scholar 

  23. Tashiro, Y., Takeda, K., & Kobayashi, G. (2005). Journal of Biotechnology, 120, 197–206. doi:10.1016/j.jbiotec.2005.05.031.

    Article  CAS  Google Scholar 

  24. Rezende, M. C., Costa, A. C., & Maciel Filho, R. (2004). International Journal of Chemical Reactor Engineering, 2, A21.

    Article  Google Scholar 

  25. Phillips, J. A., & Humphrey, A. E. (1983). In E. J. Soltes (Ed.), Wood and agricultural residues: research on use for feed, fuels and chemicals. New York: Academic.

    Google Scholar 

  26. Jones, D. T., & Woods, D. R. (1986). Microbiological Reviews, 50, 484–524.

    CAS  Google Scholar 

  27. Gapes, J. R. (2000). Journal of Molecular Microbiology and Biotechnology, 2, 27–32.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the financial support (process numbers 2007/00341-1 and 2006/55177-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Pinto Mariano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto Mariano, A., Bastos Borba Costa, C., de Franceschi de Angelis, D. et al. Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production. Appl Biochem Biotechnol 159, 366–381 (2009). https://doi.org/10.1007/s12010-008-8450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8450-6

Keywords

Navigation