Advertisement

Characterization of Fast Pyrolysis Bio-oils Produced from Pretreated Pine Wood

  • El-barbary M. HassanEmail author
  • Philip H. Steele
  • Leonard Ingram
Article

Abstract

The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 °C. The bio-oils’ physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper.

Keywords

Pretreatment Bio-oil Pine wood Fast pyrolysis Chemical characterization 

References

  1. 1.
    Agarwal, A. K., & Agarwal, G. D. (1999). TERI Information Monitor on Environmental Science, 4, 1–2.Google Scholar
  2. 2.
    Chum, H. L., & Overend, R. P. (2001). Fuel Processing Technology, 71, 187–195. doi: 10.1016/S0378-3820(01)00146-1.CrossRefGoogle Scholar
  3. 3.
    The 2nd World Conference and Technological Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, 10–14 May 2004.Google Scholar
  4. 4.
    Gerçel, H. F. (2002). Bioresource Technology, 85, 113–117. doi: 10.1016/S0960-8524(02)00101-3.CrossRefGoogle Scholar
  5. 5.
    Brigwater, A. V., Toft, A. J., & Brammer, J. G. (2002). Renewable and Sustainable Energy Reviews, 6, 181–246. doi: 10.1016/S1364-0321(01)00010-7.CrossRefGoogle Scholar
  6. 6.
    Yanik, J., Kornmayer, C., Saglam, M., & Yüksel, M. (2007). Fuel Processing Technology, 88, 942–947. doi: 10.1016/j.fuproc.2007.05.002.CrossRefGoogle Scholar
  7. 7.
    Pattiya, A., James, O. T., & Bridgwater, A. V. (2006). In: 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand., pp. 21–23.Google Scholar
  8. 8.
    Mohan, D., Pittman, C. U., & Philip, S. (2006). Energy & Fuels, 20, 848–889. doi: 10.1021/ef0502397.CrossRefGoogle Scholar
  9. 9.
    Bridgwater, A. V. (1999). J. Anal. Appl. Pyrolysis, 51, 3–22. doi: 10.1016/S0165-2370(99)00005-4.CrossRefGoogle Scholar
  10. 10.
    Şensöz, S., Angın, D., & Yorgun, S. (2000). Biomass and Bioenergy, 19, 271–279. doi: 10.1016/S0961-9534(00)00041-6.CrossRefGoogle Scholar
  11. 11.
    Bonelli, P. R., Rocca, P. A. D., Cerrella, E. G., & Cukierman, A. L. (2001). Bioresource Technology, 76, 15–22. doi: 10.1016/S0960-8524(00)00085-7.CrossRefGoogle Scholar
  12. 12.
    Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2006). Renewable Energy, 31, 803–810. doi: 10.1016/j.renene.2005.03.013.CrossRefGoogle Scholar
  13. 13.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686. doi: 10.1016/j.biortech.2004.06.025.CrossRefGoogle Scholar
  14. 14.
    Mandels, M., Hontz, L., & Nystrom, J. (1974). Biotechnology and Bioengineering, 16, 1471–1493. doi: 10.1002/bit.260161105.CrossRefGoogle Scholar
  15. 15.
    Hsu, T.-A. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization pp. 184–187. Washington, DC: Taylor & Francis.Google Scholar
  16. 16.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11. doi: 10.1016/S0960-8524(01)00212-7.CrossRefGoogle Scholar
  17. 17.
    Kaar, W. E., Gutierrez, C. V., & Kinoshita, C. M. (1998). Biomass and Bioenergy, 14, 277–287. doi: 10.1016/S0961-9534(97)10038-1.CrossRefGoogle Scholar
  18. 18.
    Mok, W. S. L., & Antal Jr., M. J. (1992). Industrial & Engineering Chemistry Research, 31, 1157–1161. doi: 10.1021/ie00004a026.CrossRefGoogle Scholar
  19. 19.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84-86, 561–576. doi: 10.1385/ABAB:84-86:1-9:561.CrossRefGoogle Scholar
  20. 20.
    Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47. doi: 10.1016/S0960-8524(03)00097-X.CrossRefGoogle Scholar
  21. 21.
    Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Meier, D., Radtke, S., & Faix, O. J. (2003). Journal of Analytical and Applied Pyrolysis, 68-69, 197–211. doi: 10.1016/S0165-2370(03)00063-9.CrossRefGoogle Scholar
  22. 22.
    Scott, D. S., Paterson, L., Piskorz, J., & Radlein, D. (2001). Journal of Analytical and Applied Pyrolysis, 57, 169–176. doi: 10.1016/S0165-2370(00)00108-X.CrossRefGoogle Scholar
  23. 23.
    Hague, R. A., & Bridgwater, A. V. (1995). In: Biomass for energy, environment, agriculture and industry, Proceedings of the 8th European Biomass conference, Vienna, Austria, Vol. 3, pp. 1734–1741.Google Scholar
  24. 24.
    Piskorz, J., Radlein, D., Scott, D. S., & Czernic, S. (1989). Journal of Analytical and Applied Pyrolysis, 16, 127–142. doi: 10.1016/0165-2370(89)85012-0.CrossRefGoogle Scholar
  25. 25.
    The Institute of Paper Chemistry (1951). Institute method, no. 428. Appleton, WI: The Institute of Paper Chemistry.Google Scholar
  26. 26.
    Wise, L. E., Murphy, M., & D’Addieco, A. A. (1946). Paper Trade Journal, 122, 35–43.Google Scholar
  27. 27.
    Leonard, I., Mohan, D., Bricka, M., Steele, P. H., Strobel, D., Crocker, D., Mitchel, B., Javedd, M., Cantrell, K., & Charles, U. P. (2008). Energy Fuels, 22, 614–625. doi: 10.1021/ef700335k.CrossRefGoogle Scholar
  28. 28.
    Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84, 5–37. doi: 10.1385/ABAB:84-86:1-9:5.CrossRefGoogle Scholar
  29. 29.
    Alén, R., Kuoppala, E., & Oesch, P. (1996). Journal of Analytical and Applied Pyrolysis, 36, 137–148. doi: 10.1016/0165-2370(96)00932-1.CrossRefGoogle Scholar
  30. 30.
    Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, E. M., & Vinzant, T. B. (2007). Biotechnology Progress, 23, 1333–1339. doi: 10.1021/bp0702018.CrossRefGoogle Scholar
  31. 31.
    Pϋtϋn, A. E. (2002). Energy sources, 24, 275–285.CrossRefGoogle Scholar
  32. 32.
    Gercel, H. F. (2002). Biomass and Bioenergy, 23, 307–314. doi: 10.1016/S0961-9534(02)00053-3.CrossRefGoogle Scholar
  33. 33.
    Das, P., Sreelatha, T., & Ganesh, A. (2004). Biomass and Bioenergy, 27, 265–275. doi: 10.1016/j.biombioe.2003.12.001.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • El-barbary M. Hassan
    • 1
    Email author
  • Philip H. Steele
    • 1
  • Leonard Ingram
    • 1
  1. 1.Department of Forest ProductsMississippi State UniversityMississippi StateUSA

Personalised recommendations