Skip to main content

Advertisement

Log in

Characterization of Fast Pyrolysis Bio-oils Produced from Pretreated Pine Wood

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 °C. The bio-oils’ physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agarwal, A. K., & Agarwal, G. D. (1999). TERI Information Monitor on Environmental Science, 4, 1–2.

    Google Scholar 

  2. Chum, H. L., & Overend, R. P. (2001). Fuel Processing Technology, 71, 187–195. doi:10.1016/S0378-3820(01)00146-1.

    Article  CAS  Google Scholar 

  3. The 2nd World Conference and Technological Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, 10–14 May 2004.

  4. Gerçel, H. F. (2002). Bioresource Technology, 85, 113–117. doi:10.1016/S0960-8524(02)00101-3.

    Article  Google Scholar 

  5. Brigwater, A. V., Toft, A. J., & Brammer, J. G. (2002). Renewable and Sustainable Energy Reviews, 6, 181–246. doi:10.1016/S1364-0321(01)00010-7.

    Article  Google Scholar 

  6. Yanik, J., Kornmayer, C., Saglam, M., & Yüksel, M. (2007). Fuel Processing Technology, 88, 942–947. doi:10.1016/j.fuproc.2007.05.002.

    Article  CAS  Google Scholar 

  7. Pattiya, A., James, O. T., & Bridgwater, A. V. (2006). In: 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand., pp. 21–23.

  8. Mohan, D., Pittman, C. U., & Philip, S. (2006). Energy & Fuels, 20, 848–889. doi:10.1021/ef0502397.

    Article  CAS  Google Scholar 

  9. Bridgwater, A. V. (1999). J. Anal. Appl. Pyrolysis, 51, 3–22. doi:10.1016/S0165-2370(99)00005-4.

    Article  CAS  Google Scholar 

  10. Şensöz, S., Angın, D., & Yorgun, S. (2000). Biomass and Bioenergy, 19, 271–279. doi:10.1016/S0961-9534(00)00041-6.

    Article  Google Scholar 

  11. Bonelli, P. R., Rocca, P. A. D., Cerrella, E. G., & Cukierman, A. L. (2001). Bioresource Technology, 76, 15–22. doi:10.1016/S0960-8524(00)00085-7.

    Article  CAS  Google Scholar 

  12. Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2006). Renewable Energy, 31, 803–810. doi:10.1016/j.renene.2005.03.013.

    Article  CAS  Google Scholar 

  13. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  14. Mandels, M., Hontz, L., & Nystrom, J. (1974). Biotechnology and Bioengineering, 16, 1471–1493. doi:10.1002/bit.260161105.

    Article  CAS  Google Scholar 

  15. Hsu, T.-A. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization pp. 184–187. Washington, DC: Taylor & Francis.

    Google Scholar 

  16. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  17. Kaar, W. E., Gutierrez, C. V., & Kinoshita, C. M. (1998). Biomass and Bioenergy, 14, 277–287. doi:10.1016/S0961-9534(97)10038-1.

    Article  CAS  Google Scholar 

  18. Mok, W. S. L., & Antal Jr., M. J. (1992). Industrial & Engineering Chemistry Research, 31, 1157–1161. doi:10.1021/ie00004a026.

    Article  CAS  Google Scholar 

  19. Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84-86, 561–576. doi:10.1385/ABAB:84-86:1-9:561.

    Article  CAS  Google Scholar 

  20. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47. doi:10.1016/S0960-8524(03)00097-X.

    Article  CAS  Google Scholar 

  21. Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Meier, D., Radtke, S., & Faix, O. J. (2003). Journal of Analytical and Applied Pyrolysis, 68-69, 197–211. doi:10.1016/S0165-2370(03)00063-9.

    Article  CAS  Google Scholar 

  22. Scott, D. S., Paterson, L., Piskorz, J., & Radlein, D. (2001). Journal of Analytical and Applied Pyrolysis, 57, 169–176. doi:10.1016/S0165-2370(00)00108-X.

    Article  CAS  Google Scholar 

  23. Hague, R. A., & Bridgwater, A. V. (1995). In: Biomass for energy, environment, agriculture and industry, Proceedings of the 8th European Biomass conference, Vienna, Austria, Vol. 3, pp. 1734–1741.

  24. Piskorz, J., Radlein, D., Scott, D. S., & Czernic, S. (1989). Journal of Analytical and Applied Pyrolysis, 16, 127–142. doi:10.1016/0165-2370(89)85012-0.

    Article  CAS  Google Scholar 

  25. The Institute of Paper Chemistry (1951). Institute method, no. 428. Appleton, WI: The Institute of Paper Chemistry.

    Google Scholar 

  26. Wise, L. E., Murphy, M., & D’Addieco, A. A. (1946). Paper Trade Journal, 122, 35–43.

    CAS  Google Scholar 

  27. Leonard, I., Mohan, D., Bricka, M., Steele, P. H., Strobel, D., Crocker, D., Mitchel, B., Javedd, M., Cantrell, K., & Charles, U. P. (2008). Energy Fuels, 22, 614–625. doi:10.1021/ef700335k.

    Article  Google Scholar 

  28. Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84, 5–37. doi:10.1385/ABAB:84-86:1-9:5.

    Article  Google Scholar 

  29. Alén, R., Kuoppala, E., & Oesch, P. (1996). Journal of Analytical and Applied Pyrolysis, 36, 137–148. doi:10.1016/0165-2370(96)00932-1.

    Article  Google Scholar 

  30. Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, E. M., & Vinzant, T. B. (2007). Biotechnology Progress, 23, 1333–1339. doi:10.1021/bp0702018.

    Article  CAS  Google Scholar 

  31. Pϋtϋn, A. E. (2002). Energy sources, 24, 275–285.

    Article  Google Scholar 

  32. Gercel, H. F. (2002). Biomass and Bioenergy, 23, 307–314. doi:10.1016/S0961-9534(02)00053-3.

    Article  CAS  Google Scholar 

  33. Das, P., Sreelatha, T., & Ganesh, A. (2004). Biomass and Bioenergy, 27, 265–275. doi:10.1016/j.biombioe.2003.12.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-barbary M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, Eb.M., Steele, P.H. & Ingram, L. Characterization of Fast Pyrolysis Bio-oils Produced from Pretreated Pine Wood. Appl Biochem Biotechnol 154, 3–13 (2009). https://doi.org/10.1007/s12010-008-8445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8445-3

Keywords

Navigation