Advertisement

Biodiesel Synthesis via Esterification of Feedstock with High Content of Free Fatty Acids

  • Marcella S. Souza
  • Erika C. G. Aguieiras
  • Mônica A. P. da Silva
  • Marta A. P. LangoneEmail author
Article

Abstract

The objective of this work was to study the synthesis of ethyl esters via esterification of soybean oil deodorizer distillate with ethanol, using solid acid catalysts and commercial immobilized lipases, in a solvent-free system. Three commercially immobilized lipases were used, namely, Lipozyme RM-IM, Lipozyme TL-IM, and Novozym 435, all from Novozymes. We aimed for optimum reaction parameters: temperature, enzyme concentration, initial amount of ethanol, and its feeding technique to the reactor (stepwise ethanolysis). Reaction was faster with Novozym 435. The highest conversion (83.5%) was obtained after 90 min using 3 wt.% of Novozym 435 and two-stage stepwise addition of ethanol at 50°C. Four catalysts were also tested: zeolite CBV-780, SAPO-34, niobia, and niobic acid. The highest conversion (30%) was obtained at 100°C, with 3 wt.% of CBV-780 after 2.5 h. The effects of zeolite CBV 780 concentration were studied, resulting in a conversion of 49% using 9 wt.% of catalyst.

Keywords

Esterification SODD Biodiesel Ethanol Immobilized lipase Zeolite 

Notes

Acknowledgements

The authors would like to acknowledge CENPES–Petrobras for financial support and Novozymes Latin America Ltda for kindly providing the enzyme for this research. Dr. Marta A.P. Langone would also like to thank the Programa Prociencia/UERJ. Marcella S. Souza is thankful to CENPES–Petrobras for the scholarship.

References

  1. 1.
    Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Renewable and Sustainable Energy Reviews, 10, 248–268. doi: 10.1016/j.rser.2004.09.002.CrossRefGoogle Scholar
  2. 2.
    Bournay, L., Casanave, D., Delfort, B., Hillion, G., & Chodorge, J. A. (2005). Catalysis Today, 106, 190–192. doi: 10.1016/j.cattod.2005.07.181.CrossRefGoogle Scholar
  3. 3.
    Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Journal of Molecular Catalysis. B, Enzymatic, 43, 29–32. doi: 10.1016/j.molcatb.2006.03.005.CrossRefGoogle Scholar
  4. 4.
    Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biomass and Bioenergy, 31, 563–568. doi: 10.1016/j.biombioe.2007.03.001.CrossRefGoogle Scholar
  5. 5.
    Appleby, D. B. (2005). The biodiesel handbook. New York: American Oil Chemists Society.Google Scholar
  6. 6.
    Kraai, G. N., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2008). Biochemical Engineering Journal, 41, 87–94. doi: 10.1016/j.bej.2008.03.011.CrossRefGoogle Scholar
  7. 7.
    Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251. doi: 10.1016/j.enzmictec.2005.10.016.CrossRefGoogle Scholar
  8. 8.
    Trubiano, G., Borio, D., & Errazu, A. (2007). Enzyme and Microbial Technology, 40, 716–722. doi: 10.1016/j.enzmictec.2006.06.003.CrossRefGoogle Scholar
  9. 9.
    Rocha, J. M. S., Gil, M. H., & Garcia, F. A. P. (1999). Journal of Chemical Technology and Biotechnology, 76, 607–612. doi: 10.1002/(SICI)1097-4660(199907)74:7<607::AID-JCTB74>3.0.CO;2-N.CrossRefGoogle Scholar
  10. 10.
    Vieira, A. P. A. (2005). Master’s Thesis. Escola de Química/UFRJ, Rio de Janeiro, Brazil.Google Scholar
  11. 11.
    Prakash, A. M., & Unnikrishnan, S. (1994). Journal of the Chemical Society, Faraday Transactions, 90, 2291–2296. doi: 10.1039/ft9949002291.CrossRefGoogle Scholar
  12. 12.
    Gomes, A. C. L., Nunes, M. H. O., Silva, V. T., & Monteiro, J. L. F. (2004). Studies in Surface Science and Catalysis, 154, 2432–2440. doi: 10.1016/S0167-2991(04)80508-1.CrossRefGoogle Scholar
  13. 13.
    Chuah, G. K., Jaenicke, S., & Chan, K. S. (1996). Applied Catalysis A General, 145, 267–284. doi: 10.1016/0926-860X(96)00152-4.CrossRefGoogle Scholar
  14. 14.
    Official Methods and Recommended Practices of The American Oil Chemists’ Society.5th, AOCS: Champaign (1998).Google Scholar
  15. 15.
    Villeneuve, P., Muderhwa, J. M., Graille, J., & Hass, M. J. (2000). Journal of Molecular Catalysis. B: Enzymatic, 9, 113–148. doi: 10.1016/S1381-1177(99)00107-1.CrossRefGoogle Scholar
  16. 16.
    Ghamgui, H., Karra-Chaâbouni, M., & Gargouri, Y. (2004). Enzyme and Microbial Technology, 35, 355–363. doi: 10.1016/j.enzmictec.2004.06.002.CrossRefGoogle Scholar
  17. 17.
    Wang, J.-X., Huang, Q.-D., Huang, F.-H., Wang, J.-W., & Huang, Q.-J. (2007). Chinese Journal of Biotechnology, 23, 1121–1128. doi: 10.1016/S1872-2075(07)60067-3.CrossRefGoogle Scholar
  18. 18.
    Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Journal of Molecular Catalysis. B: Enzymatic, 17, 133–142. doi: 10.1016/S1381-1177(02)00020-6.CrossRefGoogle Scholar
  19. 19.
    Vieira, A. P. A., Silva, M. A. P., & Langone, M. A. P. (2006). Latin American Applied Research, 36, 283–288.Google Scholar
  20. 20.
    Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Pennsylvania (1998).Google Scholar
  21. 21.
    Dahl, I. M., Wendelbo, R., Andersen, A., Akporiaye, D., Mostad, H., & Fuglerud, T. (1999). Microporous and Mesoporous Materials, 29, 159–171. doi: 10.1016/S1387-1811(98)00328-X.CrossRefGoogle Scholar
  22. 22.
    Aguayo, A. T., Gayubo, A. G., Vivanco, R., Olazar, M., & Bilbao, J. (2005). Applied Catalysis A General, 283, 197–207. doi: 10.1016/j.apcata.2005.01.006.CrossRefGoogle Scholar
  23. 23.
    Tonetto, G., Atias, J., & Lasa, H. (2004). Applied Catalysis A General, 270, 9–25. doi: 10.1016/j.apcata.2004.03.042.CrossRefGoogle Scholar
  24. 24.
    Katada, N., & Niwa, M. (2004). Catalysis Surveys from Asia, 8, 161–170. doi: 10.1023/B:CATS.0000038534.37849.16.CrossRefGoogle Scholar
  25. 25.
    Triantafillidis, C. S., Vlessidis, A. G., Nalbandian, L., & Evmiridis, N. P. (2001). Microporous and Mesoporous Materials, 47, 369–388. doi: 10.1016/S1387-1811(01)00399-7.CrossRefGoogle Scholar
  26. 26.
    Lee, Y.-J., Baek, S.-C., & Jun, K.-W. (2007). Applied Catalysis A General, 329, 130–136. doi: 10.1016/j.apcata.2007.06.034.CrossRefGoogle Scholar
  27. 27.
    Yoo, K. S., Kim, J.-H., Park, M.-J., Kim, S.-J., Joo, O.-S., & Jung, K. D. (2007). Applied Catalysis A General, 330, 57–62. doi: 10.1016/j.apcata.2007.07.007.CrossRefGoogle Scholar
  28. 28.
    Bhatt, N., & Patel, A. (2005). Journal of Molecular Catalysis A Chemical, 238, 223–228. doi: 10.1016/j.molcata.2005.05.019.CrossRefGoogle Scholar
  29. 29.
    Corma, A. (2003). Journal of Catalysis, 216, 298–312. doi: 10.1016/S0021-9517(02)00132-X.CrossRefGoogle Scholar
  30. 30.
    Ramu, S., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Suryanarayana, I. P. S., & Prasad, P. S. S. (2004). Applied Catalysis A General, 276, 163–168. doi: 10.1016/j.apcata.2004.08.002.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Marcella S. Souza
    • 1
  • Erika C. G. Aguieiras
    • 2
  • Mônica A. P. da Silva
    • 1
  • Marta A. P. Langone
    • 3
    Email author
  1. 1.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations