Skip to main content
Log in

Co-Expression of Recombinant Nucleoside Phosphorylase from Escherichia coli and its Application

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The genes encoding purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase), and thymidine phosphorylase (TPase) from Escherichia coli K12 were cloned respectively into expression vector pET-11a or pET-28a. The recombinant plasmids were transformed into the host strain E. coli BL21(DE3) to construct four co-expression recombinant strains. Two of them had double recombinant plasmids (DUD and DAD) and the other two had tandem recombinant plasmid (TDU and TDA) in them. Under the repression of antibiotic, recombinant plasmids stably existed in host strains. Enzymes were abundantly expressed after induction with IPTG and large amount of target proteins were expressed in soluble form analyzed with SDS-PAGE. Compared with the host strain, enzyme activity of the recombinant strains had been notably improved. In the transglycosylation reaction, yield of 2,6-diaminopurine-2’-deoxyriboside (DAPdR) from 2,6-diaminopurine (DAP) and thymidine reached 40.2% and 51.8% catalyzed by DAD and TDA respectively; yield of 2,6-diaminopurine riboside (DAPR) from DAP and uridine reached 88.2% and 58.0% catalyzed by TDU and DUD respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ershler, B. W. (2006). Capecitabine use in geriatric oncology: an analysis of current safety, efficacy, and quality of life data. Critical Reviews in Oncology/Hematology, 58, 68–78. doi:10.1016/j.critrevonc.2005.08.006.

    Article  Google Scholar 

  2. Sarafianos, S. C., Hughes, S. H., & Arnold, E. (2004). Designing anti-AIDS drugs targeting the major mechanism of HIV-1 RT resistance to nucleoside analog drugs. The International Journal of Biochemistry & Cell Biology, 36, 1706–1715. doi:10.1016/j.biocel.2004.02.027.

    Article  CAS  Google Scholar 

  3. Anglada, M. P., Soldado, P. C., Arcas, M. M., Lostao, M. P., Larr’ayoz, I., Picado, J. M., & Casado, F. J. (2005). Cell entry and export of nucleoside analogues. Virus Research, 107, 151–164. doi:10.1016/j.virusres.2004.11.005.

    Article  Google Scholar 

  4. Utagawa, T. (1999). Enzymatic preparation of nucleoside antibiotics. Journal of Molecular Catalysis. B, Enzymatic, 6, 215–222. doi:10.1016/S1381-1177(98)00128-3.

    Article  CAS  Google Scholar 

  5. Zhang, S. T., Ni, M. X., & Ruan, Q. P. (2005). Enzymatic synthesis of nucleoside drugs. Progress in Pharmaceutical Sciences, 29, 56–62.

    CAS  Google Scholar 

  6. Bzowska, A., Kulikowska, E., & Shugar, D. (2000). Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacology & Therapeutics, 88, 349–425. doi:10.1016/S0163-7258(00)00097-8.

    Article  CAS  Google Scholar 

  7. Pugmire, M. J., & Ealick, S. E. (2002). Structural analyses reveal two distinct families of nucleoside phosphorylases. The Biochemical Journal, 361, 1–25. doi:10.1042/0264-6021:3610001.

    Article  CAS  Google Scholar 

  8. Nagata, T., Nakamori, M., Iwahashi, M., & Yamaue, H. (2002). Overexpression of pyrimidine nucleoside phosphorylase enhances the sensitivity to 5’-deoxy-5-fluorouridine in tumour cells in vitro and in vivo. Eur J Cancer, 38, 712–717. doi:10.1016/S0959-8049(01)00469-5.

    Article  CAS  Google Scholar 

  9. O’Donovan, G. A., & Neuhard, Y. (1970). Pyrimidine metabolism in microorganisms. Bacteriological Reviews, 34, 278–343.

    Google Scholar 

  10. Jensen, K. F., & Nygaard, P. (1975). Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. European Journal of Biochemistry, 51, 253–265. doi:10.1111/j.1432-1033.1975.tb03925.x.

    Article  CAS  Google Scholar 

  11. Kremlitsky, T. A., Koszalska, G. W., & Tuttle, J. V. (1981). An enzymic synthesis of purine D-arabinonucleosides. Carbohydrate Research, 97, 139–146. doi:10.1016/S0008-6215(00)80531-5.

    Article  Google Scholar 

  12. Walton, L., Richards, C. A., & Elwell, L. P. (1989). Nucleotide sequence of the Escherichia coli uridine phosphorylase gene. Nucleic Acids Research, 17, 6741. doi:10.1093/nar/17.16.6741.

    Article  CAS  Google Scholar 

  13. Sambrook, J., & Fritsch, E. F. (1989). Molecular Cloning: a laboratory manual (2ndnd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  14. Zhang, Y. K., Li, T. M., & Liu, J. J. (2003). Low temperature and glucose enhanced T7 RNA polymerase-based plasmid stability for increasing expression of glucagons-like peptide-2 in Escherichia coli. Protein Expression and Purification, 29, 132–139. doi:10.1016/S1046-5928(03)00002-0.

    Article  CAS  Google Scholar 

  15. Kalckar, H. M. (1947). Differential spectrophotometry of purine compounds by means of specific enzymes. III. Studies of the enzymes of purine metabolism. Journal of Biochemistry, 167, 461–475.

    Google Scholar 

  16. Bergmeyer, H. U., Gawehn, K., & Grassl, M. (1974). Methods of enzymatic analysis (2ndnd ed.). New York: Academic.

    Google Scholar 

  17. Thomas, A. K., Joel, V. T., & George, W. K. (1976). Deoxycytidine Kinase from Calf Thymus: substrate and inhibitor specificity. Journal of Biochemistry, 251, 4055–4061.

    Google Scholar 

  18. Colowick, S. P., & Kaplan, N. O. (1955). Method in enzymology II. New York: Academic.

    Google Scholar 

  19. Phyllis, R. B. (1984). HPLC in nucleic acid research: Methods and applications. Boca Raton: CRC.

    Google Scholar 

  20. Esipov, R. S., Gurevich, A. I., Chuvikovsky, D. V., Chupova, L. A., Muravyova, T. I., & Miroshnikov, A. I. (2002). Overexpression of Escherichia coli genes encoding nucleoside phosphorylases in the pET/Bl21(DE3) system yields active recombinant enzymes. Protein Expression and Purification, 24, 56–60. doi:10.1006/prep.2001.1524.

    Article  CAS  Google Scholar 

  21. Moore, J. T., Uppal, A., Maley, F., & Maley, G. F. (1993). Overcoming inclusion body formation in a high-level expression system. Protein Expression and Purification, 4, 160–163. doi:10.1006/prep.1993.1022.

    Article  CAS  Google Scholar 

  22. M’edici, R. (2006). Lewkowicz ES, Iribarren AM. Microbial synthesis of 2,6-diaminopurine nucleosides. Journal of Molecular Catalysis. B, Enzymatic, 39, 40–44. doi:10.1016/j.molcatb.2006.01.024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbao Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, C., OuYang, L., Ding, Q. et al. Co-Expression of Recombinant Nucleoside Phosphorylase from Escherichia coli and its Application. Appl Biochem Biotechnol 159, 168–177 (2009). https://doi.org/10.1007/s12010-008-8429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8429-3

Keywords

Navigation