Skip to main content
Log in

Enhanced Production of Poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by Using Metabolic Precursors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the effect of addition of different amino acids and tricarboxylic acid cycle intermediates as metabolic precursors on the production of poly (γ-glutamic acid) (PGA) by Bacillus licheniformis NCIM 2324. A maximum yield of 35.75 g/l was obtained with the medium supplemented with 0.5 mM l-glutamine and 10 mM α-ketoglutaric acid as compared to 26.12 g/l PGA achieved with the control in the absence of metabolic precursors. Addition of precursors also enhanced the utilization of l-glutamic acid during fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashiuchi, M., & Misono, H. (2002). Applied Microbiology and Biotechnology, 59, 9–14. doi:10.1007/s00253-002-0984-x.

    Article  CAS  Google Scholar 

  2. Shih, I. L., & Van, Y. T. (2001). Bioresource Technology, 79, 207–225. doi:10.1016/S0960-8524(01)00074-8.

    Article  CAS  Google Scholar 

  3. Kunioka, M. (1997). Applied Microbiology and Biotechnology, 47, 469–475. doi:10.1007/s002530050958.

    Article  CAS  Google Scholar 

  4. Belitsky, B. R., & Sonenshein, A. L. (1998). Journal of Bacteriology, 180, 6298–6305.

    CAS  Google Scholar 

  5. Watanabe, A., Yoshimura, T., Mikami, B., Hayashi, H., Kagamiyama, H., & Esaki, N. (2002). The Journal of Biological Chemistry, 277(21), 19166–19172. doi:10.1074/jbc.M201615200.

    Article  CAS  Google Scholar 

  6. Strych, U., Davlieva, M., Longtin, J. P., Murphy, E. L., Im, H., Benedik, M. J., et al. (2007). BMC Microbiology, 7(40), 1–7.

    Google Scholar 

  7. Thorne, C. B., & Molnar, D. M. (1955). Journal of Bacteriology, 70, 420–426.

    CAS  Google Scholar 

  8. Hara, T., Fujio, Y., & Udea, S. (1982a). Journal of Applied Biochemistry, 4, 112–120.

    CAS  Google Scholar 

  9. Hara, T., Aumayr, A., Fujio, Y., & Ueda, S. (1982b). Applied and Environmental Microbiology, 44, 1456–1458.

    CAS  Google Scholar 

  10. Leonard, C. G., & Housewright, R. D. (1963). Biochimica et Biophysica Acta, 73, 530–532. doi:10.1016/0006-3002(63)90461-X.

    Article  CAS  Google Scholar 

  11. Troy, F. A. (1973). The Journal of Biological Chemistry, 248, 305–316.

    CAS  Google Scholar 

  12. Gardner, J. M., & Troy, F. A. (1979). The Journal of Biological Chemistry, 254, 6262–6269.

    CAS  Google Scholar 

  13. Kunioka, M. (1995). Applied Microbiology and Biotechnology, 44, 501–506. doi:10.1007/BF00169951.

    Article  CAS  Google Scholar 

  14. Xu, H., Jiang, M., Li, H., Lu, D., & Ouyang, P. (2005). Process Biochemistry, 40, 519–523. doi:10.1016/j.procbio.2003.09.025.

    Article  CAS  Google Scholar 

  15. Du, G., Yang, G., Qu, Y., Chen, J., & Lun, S. (2005). Process Biochemistry, 40, 2143–2147. doi:10.1016/j.procbio.2004.08.005.

    Article  CAS  Google Scholar 

  16. Williams, A. G., Noble, J., & Banks, J. M. (2004). Letters in Applied Microbiology, 38, 289–295. doi:10.1111/j.1472-765X.2004.01484.x.

    Article  CAS  Google Scholar 

  17. Tavaria, F. K., Dahl, S., Carballo, F. J., & Malcata, F. X. (2002). Journal of Dairy Science, 85, 2462–2470.

    Article  CAS  Google Scholar 

  18. Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). Bioresource Technology, 100(2), 826–832.

    Google Scholar 

  19. Goto, A., & Kunioka, M. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 1031–1035.

    Article  CAS  Google Scholar 

  20. Chen, X., Chen, S., Sun, M., & Yu, Z. (2005). Applied Microbiology and Biotechnology, 69, 390–396. doi:10.1007/s00253-005-1989-z.

    Article  CAS  Google Scholar 

  21. Bok, S. H., & Demain, A. L. (1977). Analytical Biochemistry, 81, 21–27. doi:10.1016/0003-2697(77)90593-0.

    Article  Google Scholar 

  22. Marrier, J. R., & Boulet, M. (1958). Journal of Dairy Science, 41, 1683.

    Article  Google Scholar 

  23. Cromwick, A. M., Birrer, G. A., & Gross, R. A. (1996). Biotechnology and Bioengineering, 50, 222–227. doi:10.1002/(SICI)1097-0290(19960420)50:2<222::AID-BIT10>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  24. Kunioka, M., & Goto, A. (1994). Applied Microbiology and Biotechnology, 40, 867–872. doi:10.1007/BF00173990.

    Article  CAS  Google Scholar 

  25. Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., Soda, K., et al. (2001). Applied Microbiology and Biotechnology, 57, 764–769. doi:10.1007/s00253-001-0848-9.

    Article  CAS  Google Scholar 

  26. Shih, I. L., Van, Y. T., & Chang, Y. N. (2002). Enzyme and Microbial Technology, 31, 213–220. doi:10.1016/S0141-0229(02)00103-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar B. Bajaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, I.B., Singhal, R.S. Enhanced Production of Poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by Using Metabolic Precursors. Appl Biochem Biotechnol 159, 133–141 (2009). https://doi.org/10.1007/s12010-008-8427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8427-5

Keywords

Navigation