Fast Biodiesel Production with One-Phase Reaction

  • Ji-Yeon Park
  • Deog-Keun Kim
  • Zhong-Ming Wang
  • Jin-Suk LeeEmail author


The feasibility of fatty acid methyl ester (FAME) as a co-solvent used to increase the mass transfer between oil and methanol was investigated. FAME, as the co-solvent, does not require additional separation after the reaction because it is the end product of the reaction. To examine intermediate phenomena during the transesterification of soybean oil, the agitation speed was controlled at a slow rate. When the molar ratio of oil to methanol was 1:6 at 0.8wt.% of KOH to oil, oil was at the bottom layer, and methanol and the catalyst were at the top layer. Under the slow agitation process, the contact surface became initially darkened with the production of FAME and glycerol. After a few minutes, the entire top layer became dark. The top layer, containing methanol, KOH, FAME, and glycerol, fell to the bottom layer and then formed the one-phase system. When 0, 5, and 10 wt.% of FAME to oil was initially introduced to the reaction mixture, the FAME content rapidly increased with the FAME concentration level. After forming the one-phase system, the rate of increase of the FAME content was very slow. The time required for the formation of the one-phase system decreased with the amount of FAME and KOH and with temperature.


Biodiesel Transesterification Co-solvent Fatty acid methyl ester One-phase reaction 



This study was supported by the Resource Recycling R&D Center, 21C Frontier R&D Program.


  1. 1.
    Marchetti, J. M., Miguel, V. U., & Errazu, A. F. (2007). Renewable and Sustainable Energy Reviews, 11(6), 1300–1311. doi: 10.1016/j.rser.2005.08.006.CrossRefGoogle Scholar
  2. 2.
    Hass, M. J., Bloomer, S., & Scott, K. (2000). Journal of the American Oil Chemists Society, 77(4), 373–379. doi: 10.1007/s11746-000-0061-1.CrossRefGoogle Scholar
  3. 3.
    Ghadge, S. V., & Raheman, H. (2006). Bioresource Technology, 97, 379–384. doi: 10.1016/j.biortech.2005.03.014.CrossRefGoogle Scholar
  4. 4.
    Foidl, N., Foidl, G., Sanchez, M., Mittebach, M., & Hackel, S. (1996). Bioresource Technology, 58, 77–82. doi: 10.1016/S0960-8524(96)00111-3.CrossRefGoogle Scholar
  5. 5.
    Canoira, L., Alcantara, R., Martinez, M. J. G., & Carrasco, J. (2006). Biomass and Bioenergy, 30, 76–81. doi: 10.1016/j.biombioe.2005.07.002.CrossRefGoogle Scholar
  6. 6.
    Conceicao, M. M., Candeia, R. A., Silva, F. C., Bezerra, A. F., Fernandes, V. J., & Souza, A. G. (2007). Renewable and Sustainable Energy Reviews, 11, 964–975. doi: 10.1016/j.rser.2005.10.001.CrossRefGoogle Scholar
  7. 7.
    Boocock, D. G. B. (1996). Canadian Patent 2131654.Google Scholar
  8. 8.
    Assmann, G., Blasey, G., Gutsche, B., Jeromin, L., Rigal, J., Armengaud, R., et al. (1996). US Patent 5514820.Google Scholar
  9. 9.
    Karmee, S. K., & Chadha, A. (2005). Bioresource Technology, 96, 1425–1429. doi: 10.1016/j.biortech.2004.12.011.CrossRefGoogle Scholar
  10. 10.
    Boocock, D. G. B., Konar, S. K., Mao, V., & Sidi, H. (1996). Biomass and Bioenergy, 11(1), 43–50. doi: 10.1016/0961-9534(95)00111-5.CrossRefGoogle Scholar
  11. 11.
    Choi, J. D., Kim, D. K., Park, J. Y., Rhee, Y. W., & Lee, J. S. (2007). Korean Chem. Eng. Res, 46(1), 194–199.Google Scholar
  12. 12.
    Park, J. Y., Kim, D. K., Wang, Z. M., Lu, P., Park, S. C., & Lee, J. S. (2008). Applied Biochemistry and Biotechnology, 148, 109–117. doi: 10.1007/s12010-007-8082-2.CrossRefGoogle Scholar
  13. 13.
    Park, J. Y., Kim, D. K., Lee, J. P., Park, S. C., Kim, Y. J., & Lee, J. S. (2008). Bioresource Technology, 99, 1196–1203. doi: 10.1016/j.biortech.2007.02.017.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Ji-Yeon Park
    • 1
  • Deog-Keun Kim
    • 1
  • Zhong-Ming Wang
    • 2
  • Jin-Suk Lee
    • 1
    Email author
  1. 1.Korea Institute of Energy ResearchDaejeonRepublic of Korea
  2. 2.Guangzhou Institute of Energy ConversionGuangzhouChina

Personalised recommendations