Skip to main content
Log in

Intensification of Biocatalytical Processes by Synergistic Substrate Conversion. Fungal Peroxidase Catalyzed N-Hydroxy Derivative Oxidation in Presence of 10-Propyl Sulfonic Acid Phenoxazine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Many industrial pollutants, xenobiotics, and industry-important compounds are known to be oxidized by peroxidases. It has been shown that highly efficient peroxidase substrates are able to enhance the oxidation of low reactive substrate by acting as mediators. To explore this effect, the oxidation of two N-hydroxy derivatives, i.e., N-hydroxy-N-phenyl-acetamide (HPA) and N-hydroxy-N-phenyl-carbamic acid methyl ester (HPCM) catalyzed by recombinant Coprinus cinereus (rCiP) peroxidase has been studied in presence of efficient substrate 3-(4a,10a-dihydro- phenoxazin-10-yl)-propane-1-sulfonic acid (PPSA) at pH 8.5. The bimolecular constant of PPSA cation radical reaction with HPA was estimated to be (2.5 ± 0.2)·107 M−1 s−1 and for HPCM was even higher. The kinetic measurements show that rCiP-catalyzed oxidation of HPA and HPCM can increase up to 33,000 times and 5,500 times in the presence of equivalent concentration of high reactive substrate PPSA. The mathematical model of synergistic rCiP-catalyzed HPA–PPSA and HPCM–PPSA oxidation was proposed. Experimentally obtained rate constants were in good agreement with those calculated from the model confirming the synergistic scheme of the substrate oxidation. In order to explain the different reactivity of substrates, the docking of substrates in the active site of the enzyme was calculated. Molecular dynamic calculations show that the enzyme–substrate complexes are structurally stable. The high reactive PPSA exhibited higher affinity to enzyme active site than HPA and HPCM. Furthermore, the orientation of HPA and HPCM was not favorable for proton transfer to the distal histidine, and different substrate reactivity was explained by these diversities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HPA:

N-hydroxy-N-phenyl-acetamide

HPCM:

N-hydroxy-N-phenyl-carbamic acid methyl ester

rCiP:

recombinant Coprinus cinereus peroxidase

ARP I/II:

Arthromyces ramosus peroxidase compound I and II

PPSA:

3-(4a,10a-dihydro- phenoxazin-10-yl)-propane-1-sulfonic acid

TEMPO:

2,2,6,6-tetramethyl-piperidine-1-oxyl radical

References

  1. Anderson, M. B., Hsuanyu, Y., Welinder, K. G., Schneider, P., & Dunford, H. B. (1991). Acta Chemica Scandinavica, 45, 1080–1086. doi:10.3891/acta.chem.scand.45-1080.

    Article  Google Scholar 

  2. Yamazaki, I. (1959). In Proceedings of the International Symposium on Enzyme Chemistry, 224–229.

  3. Pryor, W. A. (1976). In Pryor, W. A. (Ed.) Free radicals in biology. New York: Academic.

  4. Holzenburg, A., Scrutton, N. S. (2000). Enzyme-catalyzed electron and radical transfer. New York: Kluwer Academic.

  5. Kulys, J., & Vidziunaite, R. (2006). Journal of Molecular Catalysis, 37, 79–83.

    Google Scholar 

  6. Goodwin, D. C., Grover, T. A., & Aust, S. D. (1996). Chemical Research in Toxicology, 9, 476–483. doi:10.1021/tx950186t.

    Article  CAS  Google Scholar 

  7. Call, H. P., & Mucke, I. (1997). Journal of Biotechnology, 53, 163–202. doi:10.1016/S0168-1656(97)01683-0.

    Article  CAS  Google Scholar 

  8. Minussi, R. C., Pastore, G. M., & Duran, N. (2007). Bioresource Technology, 98, 158–164. doi:10.1016/j.biortech.2005.11.008.

    Article  CAS  Google Scholar 

  9. Cambria, M. T., Minniti, Z., Librando, V., & Cambria, A. (2008). Applied Biochemistry and Biotechnology, 149, 1–8. doi:10.1007/s12010-007-8100-4.

    Article  CAS  Google Scholar 

  10. Kulys, J., Deussen, H. J., Krikstopaitis, K., Schneider, P., & Ziemys, A. (2001). Monatshefte für Chemie, 132, 295–304.

    CAS  Google Scholar 

  11. Kulys, J., Deussen, H. J., Krikstopaitis, K., Lolck, R., Schneider, P., & Ziemys, A. (2001). European Journal of Organic Chemistry, 18, 3475–3484. doi:10.1002/1099-0690(200109)2001:18<3475::AID-EJOC3475>3.0.CO;2-K.

    Article  Google Scholar 

  12. Kulys, J., & Ziemys, A. (2001). A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations. BMC Structural Biology, 1, 3. doi:10.1186/1472-6807-1-3.

    Article  CAS  Google Scholar 

  13. Xu, F., Kulys, J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. J., et al. (2000). Applied and Environmental Microbiology, 66, 2052–2056. doi:10.1128/AEM.66.5.2052-2056.2000.

    Article  CAS  Google Scholar 

  14. Indiani, Ch., Santoni, E., Becucci, M., Boffi, A., Fukuyama, K., & Smulevich, G. (2003). Biochemistry, 47, 14066–14074. doi:10.1021/bi035290l.

    Article  Google Scholar 

  15. Itakura, H., Oda, Y., & Fukuyama, K. (1997). FEBS Letters, 412, 107–110. doi:10.1016/S0014-5793(97)00751-5.

    Article  CAS  Google Scholar 

  16. Tsukamoto, K., Itakura, H., Sato, K., Fukuyama, K., Miura, S., Takahashi, S., et al. (1999). Biochemistry, 28, 12558–12568. doi:10.1021/bi982925l.

    Article  Google Scholar 

  17. Kulys, J., & Bratkovskaja, I. (2007). Talanta, 72, 526–531. doi:10.1016/j.talanta.2006.11.011.

    Article  CAS  Google Scholar 

  18. Marcus, R. A., & Sutin, N. (1985). Biochimica et Biophysica Acta, 811, 265–322.

    CAS  Google Scholar 

  19. Kulys, J., Tetianec, L., & Ziemys, A. (2006). Journal of Inorganic Biochemistry, 10, 1614–1622. doi:10.1016/j.jinorgbio.2006.05.017.

    Article  Google Scholar 

  20. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2001). Gaussian 98W. Pittsburgh: Gaussian.

    Google Scholar 

  21. Goodsell, D. S., & Olson, A. J. (1990). Proteins: Structure, Function and Genetics, 8, 195–202. doi:10.1002/prot.340080302.

    Article  CAS  Google Scholar 

  22. Morris, G. M., Goodsell, D. S., Huey, R., & Olson, A. J. (1996). Journal of Computer-Aided Molecular Design, 10, 293–304. doi:10.1007/BF00124499.

    Article  CAS  Google Scholar 

  23. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Journal of Computational Chemistry, 19, 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  24. Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., & Amachi, T. (1994). Journal of Molecular Biology, 235, 331–344. doi:10.1016/S0022-2836(05)80037-3.

    Article  CAS  Google Scholar 

  25. Berglund, G. I., Carlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A., & Hajdu, J. (2002). Nature, 417, 463–468. doi:10.1038/417463a.

    Article  CAS  Google Scholar 

  26. Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). Computer Physics Communications, 91, 43–56. doi:10.1016/0010-4655(95)00042-E.

    Article  CAS  Google Scholar 

  27. Lindahl, E., Hess, B., & van der Spoel, D. (2001). Journal of Molecular Modeling, 7, 306–317.

    CAS  Google Scholar 

  28. Van Gunsteren, W. F., Billeter, S. R. Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P., Tironi, I. G. (1996). Zurich: Hochschulverlag AG an der ETH Zurich.

  29. Schuettelkopf, A. W., & van Aalten, D. M. F. (2004). Acta Crystallographica. Section D, Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679.

    Article  Google Scholar 

  30. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., & Hermans, J. (1981). Intermolecular forces. Dordrecht: D Reidel.

    Google Scholar 

  31. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraije, J. G. E. M. (1997). Journal of Computational Chemistry, 18, 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  32. Berendsen, H. J. C., Postma, J. P. M., DiNola, A., & Haak, J. R. (1984). The Journal of Chemical Physics, 81, 3684–3690. doi:10.1063/1.448118.

    Article  CAS  Google Scholar 

  33. Darden, T., York, D., & Pedersen, L. (1995). The Journal of Chemical Physics, 98, 10089–10092. doi:10.1063/1.464397.

    Article  Google Scholar 

  34. Kulys, J. (2005). Nonlinear Analysis: Modeling and Control, 10, 223–233.

    Google Scholar 

  35. Henriksen, A., Smith, A. T., & Gajhede, M. (1999). The Journal of Biological Chemistry, 274, 35005–35011. doi:10.1074/jbc.274.49.35005.

    Article  CAS  Google Scholar 

  36. Derat, E., & Shaik, S. J. (2006). Journal of the American Chemical Society, 128, 13940–13949. doi:10.1021/ja065058d.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Lithuanian State Science and Studies Foundation, project BaltNano. The authors thank Dr. Arturas Ziemys for providing the ARP compound I/II structure files and helping in the computation methods and Dr. Vadimas Starikovicius for consulting and providing help in parallel computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juozas Kulys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulys, J., Dapkunas, Z. & Stupak, R. Intensification of Biocatalytical Processes by Synergistic Substrate Conversion. Fungal Peroxidase Catalyzed N-Hydroxy Derivative Oxidation in Presence of 10-Propyl Sulfonic Acid Phenoxazine. Appl Biochem Biotechnol 158, 445–456 (2009). https://doi.org/10.1007/s12010-008-8415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8415-9

Keywords

Navigation