Skip to main content
Log in

Recombination System Based on Cre α Complementation and Leucine Zipper Fusions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In a previous study, a recombination system based on the α complementation of cre recombinase and protein transduction was established. This system relied on the transient expression of the inactive, self-excisable C-terminal (β) and the transduction of the N-terminal (α) cre fragments to cells as a purified protein. This recombination system potentially results in a less invasive and more controllable cre recombination in mammalian cells. In this study, we have employed a more efficient complementation triggering sequence using more than only the overlapping amino acids to help the α and β fragments reassociate. In order to increase the association efficiency of the complementing fragments of cre recombinase, we chose to use a fusion of cre fragments to a self-heterodimerizing pair of proteins to trigger their binding and thus increase the efficiency of the restored enzymatic activity. For this purpose, the leucine zipper motifs (bJun and bFos) of the AP-1 transcription were fused to cre fragments (α and β, respectively). This resulted in an increased reassociation efficiency of the fragments and a two times more efficient recombination system compared with the previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sauer, B., & Henderson, N. (1988). Proceedings of the National Academy of Sciences of the United States of America, 85, 5166–5170.

    Article  CAS  Google Scholar 

  2. Nagy, A. (2000). Genesis, 26, 99–109.

    Article  CAS  Google Scholar 

  3. Breckenridge, R., Kotecha, S., Towers, N., Bennett, M., & Mohun, T. (2007). Genesis, 45, 135–144.

    Article  CAS  Google Scholar 

  4. Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S., & Capecchi, M. R. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 13702–13707. doi:10.1073/pnas.240471297.

    Article  CAS  Google Scholar 

  5. Loonstra, A., Vooijs, M., Beverloo, H. B., Allak, B. A., van Drunen, E., Kanaar, R., et al. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 9209–9214. doi:10.1073/pnas.161269798.

    Article  CAS  Google Scholar 

  6. Silver, D. P., & Livingston, D. M. (2001). Molecular Cell, 8, 233–243. doi:10.1016/S1097-2765(01)00295-7.

    Article  CAS  Google Scholar 

  7. Casanova, E., Lemberger, T., Fehsenfeld, S., Mantamadiotis, T., & Schutz, G. (2003). Genesis, 37, 25–29.

    Article  CAS  Google Scholar 

  8. Jullien, N., Sampieri, F., Enjalbert, A., & Herman, J. P. (2003). Nucleic Acids Research, 31, e131. doi:10.1093/nar/gng131.

    Article  Google Scholar 

  9. Seidi, A., Mie, M., & Kobatake, E. (2007). Biotechnology Letters, 29, 1315–1322. doi:10.1007/s10529-007-9406-6.

    Article  CAS  Google Scholar 

  10. Glover, J. N., & Harrison, S. C. (1995). Nature, 373, 257–261. doi:10.1038/373257a0.

    Article  CAS  Google Scholar 

  11. Hess, J., Angel, P., & Pchorpp-Kistner, M. (2004). Journal of Cell Science, 117, 5965–5973. doi:10.1242/jcs.01589.

    Article  CAS  Google Scholar 

  12. Smeal, T., Angel, P., Meek, J., & Karin, M. (1989). Genes & Development, 3, 2091–2100. doi:10.1101/gad.3.12b.2091.

    Article  CAS  Google Scholar 

  13. Xu, Y., Xu, G., Liu, B., & Gu, G. (2007). Nucleic Acids Research, 35, e126. doi:10.1093/nar/gkm559.

    Article  Google Scholar 

  14. Ghosh, I., Hamilton, A. D., & Regan, L. (2000). Journal of the American Chemical Society, 122, 5658–5659. doi:10.1021/ja994421w.

    Article  CAS  Google Scholar 

  15. Hu, C. D., Chinencov, Y., & Kerppola, T. (2002). Molecular Cell, 9, 789–798. doi:10.1016/S1097-2765(02)00496-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiry Kobatake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidi, A., Mie, M. & Kobatake, E. Recombination System Based on Cre α Complementation and Leucine Zipper Fusions. Appl Biochem Biotechnol 158, 334–342 (2009). https://doi.org/10.1007/s12010-008-8409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8409-7

Keywords

Navigation