Skip to main content

Advertisement

Log in

The Impact of Biomass Availability and Processing Cost on Optimum Size and Processing Technology Selection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biomass processing plants have a trade-off between two competing cost factors: as size increases, the economy of scale reduces per unit processing cost, while a longer biomass transportation distance increases the delivered cost of biomass. The competition between these cost factors leads to an optimum size at which the cost of energy produced from biomass is minimized. Four processing options are evaluated: power production via direct combustion and via biomass integrated gasification and combined cycle (BIGCC), ethanol production via fermentation, and syndiesel via Fischer Tropsch. The optimum size is calculated as a function of biomass gross yield (the biomass available to the processing plant from the total surrounding area) and processing cost (capital recovery and operating costs). Higher biomass gross yield and higher processing cost each lead to a higher optimum size. For most cases, a small relaxation in the objective of minimum cost, 3%, leads to a halving of plant size. Direct combustion and BIGCC each produce power, with BIGCC having a higher capital cost and conversion efficiency. When the delivered cost of biomass is high, BIGCC produces power at a lower cost than direct combustion. The crossover point at which this occurs is calculated as a function of the purchase cost of biomass and the biomass gross yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Park, R. (1984). New York, USA: Wiley-Interscience.

  2. Sherrod, H., & Saarivirta, P. (2005). Kvaerner Power North America, Irving, Texas, USA, 75062. Power Generation Systems, Kvaerner Power Oy, Kelloportinkatu, ID, Tampere.

  3. Cameron, J., Kumar, A., & Flynn, P. (2007). Biomass and Bioenergy, 31, 137–144.

    Article  CAS  Google Scholar 

  4. Ghafoori, E., & Flynn, P. (2007). ASABE Transactions, 50, 1029–1036.

    CAS  Google Scholar 

  5. Ghafoori, E., Flynn, P., & Feddes, J. (2005). ASAE Pacific Northwest Section Meeting Presentation, PNW05-1012, Lethbridge, Alberta, Canada.

  6. Gallagher, P., Brubaker, H., & Shapouri, H. (2005). Biomass and Bioenergy, 28, 565–571.

    Article  Google Scholar 

  7. Kaylen, M., Van Dyne, D., Choi, Y., & Base, M. (2000). Bioresource Technology, 72, 19–32.

    Article  CAS  Google Scholar 

  8. Boerrigter, H. (2006). ECN Biomass, Coal & Environmental Research ECN-C-019.

  9. Jenkins, B. (2007). Biomass and Bioenergy, 13, 1–9.

    Article  Google Scholar 

  10. Kumar, A., Cameron, J., & Flynn, P. (2003). Biomass and Bioenergy, 24, 445–464.

    Article  Google Scholar 

  11. Larson, E., & Marrison, C. (1997). Journal of Engineering for Gas Turbines and Power, 119, 285–290.

    Article  CAS  Google Scholar 

  12. Nguyen, M., & Prince, R. (1996). Biomass and Bioenergy, 10, 361–365.

    Article  CAS  Google Scholar 

  13. Overend, R. (1982). Biomass, 2, 75–79.

    Article  Google Scholar 

  14. Rodrigues, M., Walter, Al., & Faaij, A. (2003). Energy, 28, 1229–1258.

    Article  CAS  Google Scholar 

  15. Federal Reserve Bank of Minneapolis. Retrieved 29 March 2008 from http://woodrow.mpls.frb.fed.us/research/data/us/calc/.

  16. Searcy, E., Flynn, P., Ghafoori, E., & Kumar, A. (2007). Applied Biochemistry and Biotechnology, 136–140, 639–652.

    Article  Google Scholar 

  17. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). National Renewable Energy Laboratory, Golden, Colorado, NREL/TP-510-32438.

  18. Flynn, P., & Kumar, A. (2005). Prepared for Biocap Canada Foundation and the Province of British Columbia.

  19. Caputo, A., Palumbo, M., Pelagagge, P., & Scacchia, F. (2005). Biomass and Bioenergy, 28, 35–51.

    Article  Google Scholar 

  20. Castleman, J. (1995). Prepared by the Tennessee Valley Authority Environmental Research Center Biotechnical Research Department, Muscle Shoals, Alabama, USA 35660.

  21. Radian Corporation. (1991). Prepared for the National Renewable Energy Laboratory, RCN-231-185-01-00.

  22. Uddin, S., & Barreto, L. (2007). Renewable Energy, 32, 1006–1019.

    Article  CAS  Google Scholar 

  23. Craig, K., & Mann, M. (1996). NREL/TP-430-21657, Golden, Colorado.

  24. Liscinsky, D., Robson, R., & Foyt, A. (2003). Proceedings of ASME Turbo Expo 2003, Power for Land, Sea, and Air. June 16–19, Atlanta, Georgia, USA.

  25. Rollins, M., Reardon, L., Nichols, D., Lee, P., Moore, M., Crim, M., et al. (2002). DE-FC26-00NT40937.

  26. United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1298.

  27. Hamelinck, C., Hooijdonk, G., & Faaij, A. (2003). Universiteit Utrecht Copernicus Institute, The Netherlands, NWS-E-2003-55.

  28. Mabee, W., Gregg, D., Arato, C., Berlin, A., Bura, R., Gilkes, N., et al. (2006). Applied Biochemistry and Biotechnology, 129–132, 55–70.

    Article  Google Scholar 

  29. United States Department of Energy. Office of Public Affairs release February 28, 2007. http://www.energy.gov/print/4827.htm. Accessed March 2, 2007.

  30. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majeski, H., and Galvez, A. (1999). National Renewable Energy Laboratory, Golden, Colorado, USA, NREL/TP-580-26157.

  31. Wyman, C. (1999). Annual Review of Energy and the Environment, 24, 189–222.

    Article  Google Scholar 

  32. McAloon, A., Taylor, F., Yee, W., Ibsen, K., & Wooley, R. (2000). National Renewable Energy Laboratory, Golden, Colorado, USA, NREL/TP-580-28893.

  33. Anderson, R. (1984). Studies in Surface Science and Catalysis, pp. 457–461.

  34. Hamelinck, C., Faaij, A., den Uil, H., & Boerrigter, H. (2004). Energy, 29, 1743–1771.

    Article  CAS  Google Scholar 

  35. Yamashita, K., & Barreto, L. (2004). International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria. Interim Report IR-04-047.

  36. Wright, M., & Brown, R. (2007). Biofuels, Bioproducts, and Biorefining, 1, 49–56.

    Article  CAS  Google Scholar 

  37. Kawulka, I. (2007). Personal communication, distributor for Choren Industries.

  38. United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1260.

  39. United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1253.

  40. Gradassi, M. (1998). Studies in Surface Science and Catalysis, 119, 35–44.

    Article  CAS  Google Scholar 

  41. Gray, D., & Tomlinson, G. (1997). Natural Gas Conversion IV, 107, 145–150.

    Article  CAS  Google Scholar 

  42. Greene, D. (1999). Oak Ridge National Laboratory, Centre for Transportation Analysis, Contract DE-AC05-96OR22464.

  43. Bechtel. (1998). DE-AC22-91PC90027, Pittsburgh, Pennsylvania, USA.

  44. Mann, M., & Spath, P. (1999). National Renewable Energy Laboratory, Golden Colorado, USA, DE-AC36-83CH10093.

  45. Larson, E., Consonni, S., Katofsky, R., Iisa, K., & Frederick, J., Jr. (2006). US Department of Energy and American Forest and Paper Association, DE-FC26-04NT42260.

  46. Boerrigter, H., & Zwart, R. (2004). Energy Research Centre of the Netherlands, ENC-C-04-001.

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Canada’s Natural Sciences and Engineering Research Council and the Poole Family; all conclusions are the authors’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Searcy, E., Flynn, P. The Impact of Biomass Availability and Processing Cost on Optimum Size and Processing Technology Selection. Appl Biochem Biotechnol 154, 92–107 (2009). https://doi.org/10.1007/s12010-008-8407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8407-9

Keywords

Navigation