Applied Biochemistry and Biotechnology

, Volume 154, Issue 1–3, pp 92–107 | Cite as

The Impact of Biomass Availability and Processing Cost on Optimum Size and Processing Technology Selection

  • Erin Searcy
  • Peter FlynnEmail author


Biomass processing plants have a trade-off between two competing cost factors: as size increases, the economy of scale reduces per unit processing cost, while a longer biomass transportation distance increases the delivered cost of biomass. The competition between these cost factors leads to an optimum size at which the cost of energy produced from biomass is minimized. Four processing options are evaluated: power production via direct combustion and via biomass integrated gasification and combined cycle (BIGCC), ethanol production via fermentation, and syndiesel via Fischer Tropsch. The optimum size is calculated as a function of biomass gross yield (the biomass available to the processing plant from the total surrounding area) and processing cost (capital recovery and operating costs). Higher biomass gross yield and higher processing cost each lead to a higher optimum size. For most cases, a small relaxation in the objective of minimum cost, 3%, leads to a halving of plant size. Direct combustion and BIGCC each produce power, with BIGCC having a higher capital cost and conversion efficiency. When the delivered cost of biomass is high, BIGCC produces power at a lower cost than direct combustion. The crossover point at which this occurs is calculated as a function of the purchase cost of biomass and the biomass gross yield.


Biomass availability Optimum plant size Biomass processing cost Economy of scale BIGCC Power from biomass Lignocellulosic ethanol Fischer Tropsch Biomass syndiesel 



The authors gratefully acknowledge financial support from Canada’s Natural Sciences and Engineering Research Council and the Poole Family; all conclusions are the authors’.


  1. 1.
    Park, R. (1984). New York, USA: Wiley-Interscience.Google Scholar
  2. 2.
    Sherrod, H., & Saarivirta, P. (2005). Kvaerner Power North America, Irving, Texas, USA, 75062. Power Generation Systems, Kvaerner Power Oy, Kelloportinkatu, ID, Tampere.Google Scholar
  3. 3.
    Cameron, J., Kumar, A., & Flynn, P. (2007). Biomass and Bioenergy, 31, 137–144.CrossRefGoogle Scholar
  4. 4.
    Ghafoori, E., & Flynn, P. (2007). ASABE Transactions, 50, 1029–1036.Google Scholar
  5. 5.
    Ghafoori, E., Flynn, P., & Feddes, J. (2005). ASAE Pacific Northwest Section Meeting Presentation, PNW05-1012, Lethbridge, Alberta, Canada.Google Scholar
  6. 6.
    Gallagher, P., Brubaker, H., & Shapouri, H. (2005). Biomass and Bioenergy, 28, 565–571.CrossRefGoogle Scholar
  7. 7.
    Kaylen, M., Van Dyne, D., Choi, Y., & Base, M. (2000). Bioresource Technology, 72, 19–32.CrossRefGoogle Scholar
  8. 8.
    Boerrigter, H. (2006). ECN Biomass, Coal & Environmental Research ECN-C-019.Google Scholar
  9. 9.
    Jenkins, B. (2007). Biomass and Bioenergy, 13, 1–9.CrossRefGoogle Scholar
  10. 10.
    Kumar, A., Cameron, J., & Flynn, P. (2003). Biomass and Bioenergy, 24, 445–464.CrossRefGoogle Scholar
  11. 11.
    Larson, E., & Marrison, C. (1997). Journal of Engineering for Gas Turbines and Power, 119, 285–290.CrossRefGoogle Scholar
  12. 12.
    Nguyen, M., & Prince, R. (1996). Biomass and Bioenergy, 10, 361–365.CrossRefGoogle Scholar
  13. 13.
    Overend, R. (1982). Biomass, 2, 75–79.CrossRefGoogle Scholar
  14. 14.
    Rodrigues, M., Walter, Al., & Faaij, A. (2003). Energy, 28, 1229–1258.CrossRefGoogle Scholar
  15. 15.
    Federal Reserve Bank of Minneapolis. Retrieved 29 March 2008 from
  16. 16.
    Searcy, E., Flynn, P., Ghafoori, E., & Kumar, A. (2007). Applied Biochemistry and Biotechnology, 136–140, 639–652.CrossRefGoogle Scholar
  17. 17.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). National Renewable Energy Laboratory, Golden, Colorado, NREL/TP-510-32438.Google Scholar
  18. 18.
    Flynn, P., & Kumar, A. (2005). Prepared for Biocap Canada Foundation and the Province of British Columbia.Google Scholar
  19. 19.
    Caputo, A., Palumbo, M., Pelagagge, P., & Scacchia, F. (2005). Biomass and Bioenergy, 28, 35–51.CrossRefGoogle Scholar
  20. 20.
    Castleman, J. (1995). Prepared by the Tennessee Valley Authority Environmental Research Center Biotechnical Research Department, Muscle Shoals, Alabama, USA 35660.Google Scholar
  21. 21.
    Radian Corporation. (1991). Prepared for the National Renewable Energy Laboratory, RCN-231-185-01-00.Google Scholar
  22. 22.
    Uddin, S., & Barreto, L. (2007). Renewable Energy, 32, 1006–1019.CrossRefGoogle Scholar
  23. 23.
    Craig, K., & Mann, M. (1996). NREL/TP-430-21657, Golden, Colorado.Google Scholar
  24. 24.
    Liscinsky, D., Robson, R., & Foyt, A. (2003). Proceedings of ASME Turbo Expo 2003, Power for Land, Sea, and Air. June 16–19, Atlanta, Georgia, USA.Google Scholar
  25. 25.
    Rollins, M., Reardon, L., Nichols, D., Lee, P., Moore, M., Crim, M., et al. (2002). DE-FC26-00NT40937.Google Scholar
  26. 26.
    United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1298.Google Scholar
  27. 27.
    Hamelinck, C., Hooijdonk, G., & Faaij, A. (2003). Universiteit Utrecht Copernicus Institute, The Netherlands, NWS-E-2003-55.Google Scholar
  28. 28.
    Mabee, W., Gregg, D., Arato, C., Berlin, A., Bura, R., Gilkes, N., et al. (2006). Applied Biochemistry and Biotechnology, 129–132, 55–70.CrossRefGoogle Scholar
  29. 29.
    United States Department of Energy. Office of Public Affairs release February 28, 2007. Accessed March 2, 2007.
  30. 30.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majeski, H., and Galvez, A. (1999). National Renewable Energy Laboratory, Golden, Colorado, USA, NREL/TP-580-26157.Google Scholar
  31. 31.
    Wyman, C. (1999). Annual Review of Energy and the Environment, 24, 189–222.CrossRefGoogle Scholar
  32. 32.
    McAloon, A., Taylor, F., Yee, W., Ibsen, K., & Wooley, R. (2000). National Renewable Energy Laboratory, Golden, Colorado, USA, NREL/TP-580-28893.Google Scholar
  33. 33.
    Anderson, R. (1984). Studies in Surface Science and Catalysis, pp. 457–461.Google Scholar
  34. 34.
    Hamelinck, C., Faaij, A., den Uil, H., & Boerrigter, H. (2004). Energy, 29, 1743–1771.CrossRefGoogle Scholar
  35. 35.
    Yamashita, K., & Barreto, L. (2004). International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria. Interim Report IR-04-047.Google Scholar
  36. 36.
    Wright, M., & Brown, R. (2007). Biofuels, Bioproducts, and Biorefining, 1, 49–56.CrossRefGoogle Scholar
  37. 37.
    Kawulka, I. (2007). Personal communication, distributor for Choren Industries.Google Scholar
  38. 38.
    United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1260.Google Scholar
  39. 39.
    United States Department of Energy National Technology Laboratory. (2007). DOE/NETL-2007/1253.Google Scholar
  40. 40.
    Gradassi, M. (1998). Studies in Surface Science and Catalysis, 119, 35–44.CrossRefGoogle Scholar
  41. 41.
    Gray, D., & Tomlinson, G. (1997). Natural Gas Conversion IV, 107, 145–150.CrossRefGoogle Scholar
  42. 42.
    Greene, D. (1999). Oak Ridge National Laboratory, Centre for Transportation Analysis, Contract DE-AC05-96OR22464.Google Scholar
  43. 43.
    Bechtel. (1998). DE-AC22-91PC90027, Pittsburgh, Pennsylvania, USA.Google Scholar
  44. 44.
    Mann, M., & Spath, P. (1999). National Renewable Energy Laboratory, Golden Colorado, USA, DE-AC36-83CH10093.Google Scholar
  45. 45.
    Larson, E., Consonni, S., Katofsky, R., Iisa, K., & Frederick, J., Jr. (2006). US Department of Energy and American Forest and Paper Association, DE-FC26-04NT42260.Google Scholar
  46. 46.
    Boerrigter, H., & Zwart, R. (2004). Energy Research Centre of the Netherlands, ENC-C-04-001.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Engineering Management Program, Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations