Skip to main content

Advertisement

Log in

Cloning and Characterization of a Novel Aspartic Protease Gene from Marine-Derived Metschnikowia reukaufii and its Expression in E. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metschnikowia reukaufii W6b isolated from marine environment was found to produce a cell-bound acid protease. The full-length cDNA (cDNASAP6 gene) of the acid protease (SAP6) from the marine-derived yeast M. reukaufii W6b was cloned. The insert was 1,755-bp long and contained an open reading frame of 1,527-bp encoding 508 amino acids. The deduced amino acid sequence included a signal peptide of 16 amino acids. The consensus motifs contained a VLLDTGSSDLRM active site and an ALLDSGTTITQF active site. The protein sequence deduced from the cDNASAP6 gene exhibited 12.9% overall identity with Cwp1 of Saccharomyces cerevisiae and a hydropathy profile characteristic of glycosylphosphatidylinositol cell-wall proteins. The cDNASAP6 gene without 48 bp encoding the signal peptide sequence was subcloned into an expression plasmid pET-24a (+) and fused with a 6-His Tag and transformed into Escherichia coli BL21 (DE3) for recombinant expression of the protease. The expressed fusion protein was found to have a unique band with molecular mass of about 54 kDa. The crude acid protease of the culture of the marine yeast strain W6b and the crude recombinant acid protease had milk clotting activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kocabiyik, S., & Ozel, H. (2007). Bioresource Technology, 98, 112–117. doi:10.1016/j.biortech.2005.11.016.

    Article  CAS  Google Scholar 

  2. De Viragh, P. A., Sanglard, D., Togni, G., & Falcetto, R. (1993). Journal of General Microbiology, 139, 335–342.

    Google Scholar 

  3. Kamada, M., Oda, K., & Murao, S. (1972). Agricultural and Biological Chemistry, 36, 1095–1101.

    CAS  Google Scholar 

  4. Maddox, I. S., & Hough, J. S. (1970). The Biochemical Journal, 117, 843–852.

    CAS  Google Scholar 

  5. Abdehl, A. T. H., Kennedy, E. H., & Ahearn, D. G. (1977). Journal of Bacteriology, 130, 1125–1129.

    Google Scholar 

  6. Tobe, S., Takami, T., Ikeda, S., & Mitsuzi, K. (1976). Agricultural and Biological Chemistry, 40, 1087–1092.

    CAS  Google Scholar 

  7. Nelson, G., & Young, T. W. (1987). Journal of General Microbiology, 133, 1461–1469.

    CAS  Google Scholar 

  8. Ray, M. K., Uma devi, K., Umar, G. S., & Shivaji, S. (1992). Applied and Environmental Microbiology, 58, 1918–1923.

    CAS  Google Scholar 

  9. Kitano, H., Kataoka, K., Furukawa, K., & Hara, S. (2002). Journal of Bioscience and Bioengineering, 93, 563–567.

    CAS  Google Scholar 

  10. Hube, B., Monod, M., Schofield, D. A., Brown, A. J. P., & Gow, N. A. R. (1994). Molecular Microbiology, 14, 87–99. doi:10.1111/j.1365-2958.1994.tb01269.x.

    Article  CAS  Google Scholar 

  11. Chi, Z. M., Liu, Z. Q., Gong, F., & Li, H. F. (2006). Journal of Ocean University of China, 3, 243–247.

    Google Scholar 

  12. Ferri, S., Miura, S., Sakaguchi, A., Ishimura, F., Tsugawa, W., & Sode, K. (2004). Marine Biotechnology (New York, N.Y.), 6, 625–632. doi:10.1007/s10126-004-0001-8.

    CAS  Google Scholar 

  13. Gao, L. M., Chi, Z. M., Sheng, J., & Ni, X. M. (2007). Applied Microbiology and Biotechnology, 77, 825–832. doi:10.1007/s00253-007-1210-7.

    Article  CAS  Google Scholar 

  14. Ni, X. M., Chi, Z. M., Ma, C. L., & Madzak, C. (2008). Marine Biotechnology (New York, N.Y.), 10, 319–327. doi:10.1007/s10126-007-9067-4.

    CAS  Google Scholar 

  15. Rhishipal, R., & Philip, R. (1998). Bioresource Technology, 65, 255–266. doi:10.1016/S0960-8524(97)00179-X.

    Article  CAS  Google Scholar 

  16. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 24, 4876–4882. doi:10.1093/nar/25.24.4876.

    Article  Google Scholar 

  17. Chi, Z. M., Ma, C. L., Wang, P., & Li, H. F. (2007). Bioresource Technology, 98, 534–538. doi:10.1016/j.biortech.2006.02.006.

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed., pp. 367–370). Beijing: Cold Spring Harbor Laboratory, (Chinese translating ed.).

    Google Scholar 

  19. Chi, Z. M., He, S., & Yao, S. M. (2005). Enzyme and Microbial Technology, 37, 395–401. doi:10.1016/j.enzmictec.2005.01.040.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  21. George, V., & Diwan, A. M. (1983). Analytical Biochemistry, 132, 481–483. doi:10.1016/0003-2697(83)90037-4.

    Article  Google Scholar 

  22. Larson, M. K., & Whltaker, J. R. (1970). Journal of Dairy Science, 3, 253–261.

    Article  Google Scholar 

  23. Berridge, N. J. (1952). Analyst (London), 77, 57–62. doi:10.1039/an952770057b.

    Article  CAS  Google Scholar 

  24. Wang, L., Chi, Z. M., Wang, X. H., Liu, Z. Q., & Li, J. (2007). Annals of Microbiology, 57, 495–501.

    Article  CAS  Google Scholar 

  25. Kurtzmam, C. P., & Fell, J. W. (1998). The yeast: A taxonomic study (2nd ed., pp. 1–100). The Netherlands: Elsevier.

    Google Scholar 

  26. Kumar, S., Sharma, N. S., Saharan, M. R., & Singh, R. (2005). Process Biochemistry, 40, 1701–1705. doi:10.1016/j.procbio.2004.06.047.

    Article  CAS  Google Scholar 

  27. Gonzalez-Lopez, C. I., Szabo, R., Blanchin-Roland, S., & Gaillardin, C. (2002). Genetics, 160, 417–427.

    CAS  Google Scholar 

  28. Clark, S. J., Templeton, M. D., & Patrick, A. (1997). Microbiology, 143, 1395–1403.

    Article  CAS  Google Scholar 

  29. Yamada, T., & Orydziak, T. D. M. (1983). Journal of Bacteriology, 154, 23–31.

    CAS  Google Scholar 

  30. Hirata, D., Fukui, S., & Yamashita, I. (1988). Agricultural and Biological Chemistry, 52, 2647–2649.

    CAS  Google Scholar 

  31. Gomi, K., Arikawa, K., Kamiya, N., Kitamoto, K., & Kumagai, C. (1993). Bioscience Biotechnology and Biochemistry, 57, 1095–1100.

    CAS  Google Scholar 

  32. Ueda, M., & Tanaka, A. (2000). Biotechnology Advances, 18, 121–140. doi:10.1016/S0734-9750(00)00031-8.

    Article  CAS  Google Scholar 

  33. Yue, L. X., Chi, Z. M., Wang, L., Liu, J., Madzak, C., Li, J., & Wang, X. H. (2008). Journal of Microbiological Methods, 72, 116–123. doi:10.1016/j.mimet.2007.11.011.

    Article  CAS  Google Scholar 

  34. Shimuta, K., Oda-Ueda, N., Washio, M., Oyama, H., Oda, K., & Tsura, D. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 1542–1546. doi:10.1271/bbb.64.1542.

    Article  CAS  Google Scholar 

  35. Yamashita, I., Hirata, D., Machida, M., & Fukui, S. (1986). Agricultural and Biological Chemistry, 50, 109–113.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Infrastructure of Natural Resources for Science and Technology Program of China (No. 2005DKA21209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chi, Z., Liu, Z. et al. Cloning and Characterization of a Novel Aspartic Protease Gene from Marine-Derived Metschnikowia reukaufii and its Expression in E. coli . Appl Biochem Biotechnol 159, 119–132 (2009). https://doi.org/10.1007/s12010-008-8400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8400-3

Keywords

Navigation