Advertisement

Production of Astaxanthin from Corn Fiber as a Value-Added Co-product of Fuel Ethanol Fermentation

  • Nhuan P. NghiemEmail author
  • Justin Montanti
  • David Johnston
Article

Abstract

Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67–210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber. The sugars tested included glucose, xylose, and arabinose. All five strains were able to utilize the three sugars for astaxanthin production. Among them, ATCC 74219 was the best astaxanthin producer. Kinetics of sugar utilization of this strain was studied, both with the individual sugars and with their mixtures. Arabinose was found to give the highest astaxanthin yield. It also was observed that glucose at high concentrations suppressed utilization of the other two sugars. Corn fiber hydrolysate obtained by dilute sulfuric acid pretreatment and subsequent enzyme hydrolysis was tested for astaxanthin production by strain ATCC 74219. Dilution of the hydrolysate was necessary to allow growth and astaxanthin production. All the sugars in the hydrolysate diluted with two volumes of water were completely consumed. Astaxanthin yield of 0.82 mg/g total sugars consumed was observed.

Keywords

Phaffia rhodozyma Astaxanthin Fuel ethanol co-products Lignocellulosic biomass Corn fiber 

References

  1. 1.
    Bothast, R. J., & Schlicher, M. A. (2005). Applied Microbiology and Biotechnology, 67, 19–25. doi: 10.1007/s00253-004-1819-8.CrossRefGoogle Scholar
  2. 2.
    Leathers, T. D. (1998). SIM News, 48, 210–217.Google Scholar
  3. 3.
    Wright, K. N. (1987). In S. A. Watson, & P. E. Ramstad (Eds.), Corn: Chemistry and technology. St. Paul, MN: Amer. Assoc. Cereal Chem.Google Scholar
  4. 4.
    Johnston, D. B., & Singh, V. (2003). US Patent 6,566,125.Google Scholar
  5. 5.
    Doner, L. W., & Hicks, K. B. (1997). Cereal Chemistry, 74, 176–181. doi: 10.1094/CCHEM.1997.74.2.176.CrossRefGoogle Scholar
  6. 6.
    Gáspár, M., Kálmán, G., & Réczey, K. (2007). Process Biochemistry, 42, 1135–1139. doi: 10.1016/j.procbio.2007.04.003.CrossRefGoogle Scholar
  7. 7.
    Leathers, T. D. (2003). FEMS Yeast Research, 3, 133–140. doi: 10.1016/S1567-1356(03)00003-5.CrossRefGoogle Scholar
  8. 8.
    Todd Lorenz, R., & Cysewski, G. R. (2000). Trends in Biotechnology, 18, 160–167. doi: 10.1016/S0167-7799(00)01433-5.CrossRefGoogle Scholar
  9. 9.
    McCoy, M. (2007). Chemical and Engineering News, 85, 22–23.Google Scholar
  10. 10.
    BCC Research (2005). The global market for carotenoids—updated edition. Wellesley: BCC Research.Google Scholar
  11. 11.
    Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Trends in Biotechnology, 5, 210–216. doi: 10.1016/S0167-7799(03)00078-7.CrossRefGoogle Scholar
  12. 12.
    Higuera-Ciapara, I., Felix-Valenzuela, L., & Goycoolea, F. M. (2007). Critical Reviews in Food Science and Nutrition, 46, 185–196. doi: 10.1080/10408690590957188.CrossRefGoogle Scholar
  13. 13.
    Palágyi, Z., Ferenczy, L., & Vágvölgyi, C. (2001). World Journal of Microbiology & Biotechnology, 17, 95–97. doi: 10.1023/A:1016689512718.CrossRefGoogle Scholar
  14. 14.
    Vazquez, M., Santos, V., & Parajo, J. C. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 263–268. doi: 10.1038/sj.jim.2900376.CrossRefGoogle Scholar
  15. 15.
    Hayman, G. T., Mannarelli, B. M., & Leathers, T. D. (1995). Journal of Industrial Microbiology & Biotechnology, 14, 389–395.Google Scholar
  16. 16.
    Jacobson, G. K., Jolly, S. O., Sedmak, J. J., Skatrud, T. J., & Wasileski, J. M. (2002). US Patent 6,413,736.Google Scholar
  17. 17.
    Bang, M. L., Villadsen, I., & Sandal, T. (1999). Applied Microbiology and Biotechnology, 51, 215–222. doi: 10.1007/s002530051384.CrossRefGoogle Scholar
  18. 18.
    Ingledew, W. M., Jones, A. M., Bhatty, R. S., & Rossnagel, B. G. (1995). Cereal Chemistry, 72, 147–150.Google Scholar
  19. 19.
    Saha, B. C., & Bothast, R. J. (1999). Applied Biochemistry and Biotechnology, 76, 65–77. doi: 10.1385/ABAB:76:2:65.CrossRefGoogle Scholar
  20. 20.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, C., Templeton, D., et al. (2005). Determination of structural carbohydrates and lignin in biomass. Golden, CO: National Renewable Energy Laboratory.Google Scholar
  21. 21.
    An, G.-H., Schuman, D. B., & Johnson, E. A. (1989). Applied and Environmental Microbiology, 55, 116–124.Google Scholar
  22. 22.
    Palmqvist, E., Grage, H., Meinander, N., & Hahn-Hagerdan, B. (1999). Biotechnology and Bioengineering, 63, 46–55. doi: 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J.CrossRefGoogle Scholar
  23. 23.
    Parra, R., Aldred, D., & Magan, N. (2005). Enzyme and Microbial Technology, 37, 704–711. doi: 10.1016/j.enzmictec.2005.04.009.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Nhuan P. Nghiem
    • 1
    Email author
  • Justin Montanti
    • 2
  • David Johnston
    • 1
  1. 1.Eastern Regional Research Center, Agricultural Research ServiceUS Department of AgricultureWyndmoorUSA
  2. 2.Department of Agricultural and Biological EngineeringClemson UniversityClemsonUSA

Personalised recommendations