Skip to main content
Log in

β-d-Xylosidase from Selenomonas ruminantium: Thermodynamics of Enzyme-Catalyzed and Noncatalyzed Reactions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-β-d-xylopyranoside (4NPX), 4-nitrophenyl-α-l-arabinofuranoside (4NPA), and 1,4-β-d-xylobiose (X2) was determined on and off (k non) the enzyme at pH 5.3, which lies in the pH-independent region for k cat and k non. Rate enhancements (k cat/k non) for 4NPX, 4NPA, and X2 are 4.3 × 1011, 2.4 × 109, and 3.7 × 1012, respectively, at 25 °C and increase with decreasing temperature. Relative parameters k cat 4NPX/k cat 4NPA, k cat 4NPX/k cat X2, and (k cat/K m)4NPX/(k cat/K m)X2 increase and (k cat/K m)4NPX/(k cat/K m)4NPA, (1/K m)4NPX/(1/K m)4NPA, and (1/K m)4NPX/(1/K m)X2 decrease with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Henrissat, B. (1991). The Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  2. Henrissat, B., & Davies, G. J. (1997). Current Opinion in Structural Biology, 7, 637–644. doi:10.1016/S0959-440X(97)80072-3.

    Article  CAS  Google Scholar 

  3. Davies, G. J., & Sinnott, M. L. (2008). The Biochemical Journal, www.biochemj.org. doi:10.1042/BJ20080382.

  4. Jordan, D. B., Li, X.-L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). Applied Biochemistry and Biotechnology, 141, 51–76. doi:10.1007/s12010-007-9210-8.

    Article  CAS  Google Scholar 

  5. Jordan, D. B. (2008). Applied Biochemistry and Biotechnology, 146, 137–149. doi:10.1007/s12010-007-8064-4.

    Article  CAS  Google Scholar 

  6. Jordan, D. B., Li, X.-L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). Applied Biochemistry and Biotechnology, 137–140, 93–104. doi:10.1007/s12010-007-9042-6.

    Article  Google Scholar 

  7. Jordan, D. B., & Li, X. L. (2007). Biochimica et Biophysica Acta, 1774, 1192–1198.

    CAS  Google Scholar 

  8. Jordan, D. B., & Braker, J. D. (2007). Archives of Biochemistry and Biophysics, 465, 231–246. doi:10.1016/j.abb.2007.05.016.

    Article  CAS  Google Scholar 

  9. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291. doi:10.1007/s10295-003-0049-x.

    Article  CAS  Google Scholar 

  10. Gray, K. A., Zhao, L., & Emptage, M. (2006). Current Opinion in Chemical Biology, 10, 141–146. doi:10.1016/j.cbpa.2006.02.035.

    Article  CAS  Google Scholar 

  11. Shallom, D., & Shoham, Y. (2003). Current Opinion in Microbiology, 6, 219–228. doi:10.1016/S1369-5274(03)00056-0.

    Article  CAS  Google Scholar 

  12. Brunzelle, J. S., Jordan, D. B., McCaslin, D. R., Olczak, A., & Wawrzak, Z. (2008). Archives of Biochemistry and Biophysics, 474, 157–166. doi:10.1016/j.abb.2008.03.007.

    Article  CAS  Google Scholar 

  13. Whitehead, T. R., & Cotta, M. A. (2001). Current Microbiology, 43, 293–298. doi:10.1007/s002840010304.

    Article  CAS  Google Scholar 

  14. Gill, S. C., & von Hippel, P. H. (1989). Analytical Biochemistry, 182, 319–326. doi:10.1016/0003-2697(89)90602-7.

    Article  CAS  Google Scholar 

  15. Barshop, B. A., Wrenn, R. F., & Frieden, C. (1983). Analytical Biochemistry, 130, 134–145. doi:10.1016/0003-2697(83)90660-7.

    Article  CAS  Google Scholar 

  16. Kezdy, F. J., & Bender, M. L. (1962). Biochemistry, 1, 1097–1106. doi:10.1021/bi00912a021.

    Article  CAS  Google Scholar 

  17. McComb, R. B., Bond, L. W., Burnett, R. W., Keech, R. C., & Bowers Jr., G. N. (1976). Clinical Chemistry, 22, 141–150.

    CAS  Google Scholar 

  18. Ziegenhorn, J., Senn, M., & Bücher, T. (1976). Clinical Chemistry, 22, 151–160.

    CAS  Google Scholar 

  19. Jordan, D. B., Mertens, J. A., & Braker, J. D. (2008). Biochimica et Biophysica Acta, in press. doi:10.1016/j.bbapap.2008.09.015.

  20. Leatherbarrow, R. J. (2001). Grafit version 5. Horley: Erithacus Software Ltd.

    Google Scholar 

  21. Harned, H. S., & Owen, B. O. (1958). The physical chemistry of electrolytic solutions (3rd ed.). New York: Reinhold.

    Google Scholar 

  22. Piszkiewicz, D., & Bruice, T. C. (1967). Journal of the American Chemical Society, 89, 6237–6243. doi:10.1021/ja01000a044.

    Article  CAS  Google Scholar 

  23. Larralde, R., Robertson, M. P., & Miller, S. L. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92, 8158–8160. doi:10.1073/pnas.92.18.8158.

    Article  CAS  Google Scholar 

  24. Snider, M. J., Gaunitz, S., Ridgway, C., Short, S. A., & Wolfenden, R. (2000). Biochemistry, 39, 9746–9753. doi:10.1021/bi000914y.

    Article  CAS  Google Scholar 

  25. Wolfenden, R., Lu, X., & Young, G. (1998). Journal of the American Chemical Society, 120, 6814–6815. doi:10.1021/ja9813055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Jordan.

Additional information

The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, D.B., Braker, J.D. β-d-Xylosidase from Selenomonas ruminantium: Thermodynamics of Enzyme-Catalyzed and Noncatalyzed Reactions. Appl Biochem Biotechnol 155, 27–43 (2009). https://doi.org/10.1007/s12010-008-8397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8397-7

Keywords

Navigation