Skip to main content
Log in

On-line Characterization of Physiological State in Poly(β-Hydroxybutyrate) Production by Wautersia eutropha

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Culture fluorescence measurement technique has the potential for on-line characterization of metabolic status of fermentation processes. Many fluorophores present inside the living cells such as NADH + H+, tryptophan, pyridoxine, and riboflavin fluoresce at specific excitation and emission wavelength combinations. Since these key intracellular metabolites are involved in cell growth and metabolism, their concentration change at any time inside the cell could reflect the changes in cell metabolic activity. NADH + H+ spectrofluorometry was used for on-line characterization of physiological state during batch cultivation of poly-β-hydroxybutyric acid (PHB) production by Wautersia eutropha. The culture fluorescence increased with an increase in the biomass concentration with time. A linear correlation between cell mass concentration and net NADH + H+ fluorescence was established during active growth phase (13 to 38 h) of batch cultivation. The rate of change of culture fluorescence (dF/dt) exhibited a gradual increase during the predominantly growth phase of batch cultivation (till 20 h). Thereafter, a sudden drop in the dF/dt rate and its leveling was recorded indicating major changes in culture metabolism status which synchronized with the start-up of accumulation of PHB. After 48 h, yet another decrease in the rate of change of fluorescence (dF/dt) was observed primarily due to severe substrate limitation in the reactor. On-line NADH + H+ fluorescence signal and its rate (dF/dt) could therefore be used to distinguish the growth, product formation, and nutrient depletion stage (the metabolic state marker) during the batch cultivation of W. eutropha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khanna, S., & Srivastava, A. K. (2005). Process Biochemistry, 40, 609–619.

    Google Scholar 

  2. Lee, S. Y. (1996). Biotechnology and Bioengineering, 49, 1–14. doi:10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  3. Duysens, L. N. M., & Amesz, J. (1957). Biochimica et Biophysica Acta, 24, 19–26. doi:10.1016/0006-3002(57)90141-5.

    Article  CAS  Google Scholar 

  4. Harrison, D. E. F., & Chance, B. (1970). Applied Microbiology, 19, 446–450.

    CAS  Google Scholar 

  5. Groom, C. A., Luong, J. H. T., & Mulchandani, A. (1988). Journal of Biotechnology, 8, 271–278. doi:10.1016/0168-1656(88)90019-3.

    Article  CAS  Google Scholar 

  6. Kwong, S. C. W., Randers, L., & Rao, G. (1992). Biotechnology Progress, 8, 410–412. doi:10.1021/bp00017a006.

    Article  CAS  Google Scholar 

  7. Farabegoli, G., Hellinga, C., Heijnen, J. J., & van Loosdrecht, M. C. (2003). Water Research, 37, 2732–2738. doi:10.1016/S0043-1354(03)00064-2.

    Article  CAS  Google Scholar 

  8. Franz, C., Jữrgen, K., Florentina, P., & Karl, B. (2005). Journal of Biotechnology, 120, 183–196. doi:10.1016/j.jbiotec.2005.05.030.

    Article  Google Scholar 

  9. Scheper, T., Gebauer, A., & Schugerl, K. (1987). Chemical Engineering Journal, 34, 7–12. doi:10.1016/0300-9467(87)85009-8.

    Article  Google Scholar 

  10. Srivastava, A. K., & Volesky, B. (1991). Applied Microbiology and Biotechnology, 34, 450–457. doi:10.1007/BF00180569.

    Article  CAS  Google Scholar 

  11. Srivastava, A. K., & Volesky, B. (1991). Biotechnology and Bioengineering, 38, 191–195. doi:10.1002/bit.260380211.

    Article  CAS  Google Scholar 

  12. Sriram, G., & Sureshkumar, G. K. (2001). Process Biochemistry, 36, 1167–1173. doi:10.1016/S0032-9592(01)00151-0.

    Article  CAS  Google Scholar 

  13. Li, J., & Humphrey, A. E. (1990). Biotechnology and Bioengineering, 37, 1043–1049. doi:10.1002/bit.260371109.

    Article  Google Scholar 

  14. Khanna, S., & Srivastava, A. K. (2005). Biotechnology Progress, 21, 830–838. doi:10.1021/bp0495769.

    Article  CAS  Google Scholar 

  15. Zinn, M., Witholt, B., & Egli, T. (2001). Advanced Drug Delivery Reviews, 53, 5–21. doi:10.1016/S0169-409X(01)00218-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, S., Srivastava, A.K. On-line Characterization of Physiological State in Poly(β-Hydroxybutyrate) Production by Wautersia eutropha . Appl Biochem Biotechnol 157, 237–243 (2009). https://doi.org/10.1007/s12010-008-8395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8395-9

Keywords

Navigation