Skip to main content

Advertisement

Log in

Effect of Starvation and Shock Loads on the Biodegradation of 4-Chlorophenol in a Discontinuous Moving Bed Biofilm Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of starvation (defined as the period without substrate) and shock loads on the performance of a moving bed sequencing batch reactor degrading 4-chlorophenol (4CP) were investigated. The biomass was acclimated to biodegrade 100 mg/L of 4CP, and the colonization of the packing material was followed. Two starvation periods and two shock loads were studied. The degradation capacity of the suspended and the attached biomass present on the moving bed was also evaluated. The experiments showed that, after the starvation period, the specific degradation rate decreased from 30.5 to 28.5 and 20 mg 4CP/gVSS/h, when starvation periods of 24 and 48 h were applied, respectively. When two concentration peaks of 500 and 1,050 mg/L were applied, a loss of 6% and 8% on the specific degradation rate, respectively, was also observed. The moving bed thus showed great robustness against starvation periods and shock loads. Suspended biomass presented higher specific degradation rates, but attached biomass did not generate a metabolite that is inhibitory when it accumulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buitrón, G., & Moreno, J. (2004). Water Science and Technology, 49(1), 79–86.

    Google Scholar 

  2. Coello Oviedo, M. D., López-Ramirez, J. A., Sales, D., & Quiroga, J. M. (2003). Chemical Engineering Journal, 94, 139–146. doi:10.1016/S1385-8947(03)00022-6.

    Article  CAS  Google Scholar 

  3. Wilderer, P. A., Irvine, R. L., & Goronszy, M. C. (2001). Sequencing batch reactor technology. Scientific and technical report No 10 (p. 76). London: IWA Publishing.

    Google Scholar 

  4. Buitrón, G., Capdeville, B., & Horny, P. (1994). Water Science and Technology, 29(7), 317–329.

    Google Scholar 

  5. Buitrón, G., Schoeb, M., & Moreno, J. (2003). Water Science and Technology, 47(10), 175–181.

    Google Scholar 

  6. Ødegaard, H., Rusten, B., & Westrum, T. (1994). Water Science and Technology, 29(10–11), 157–165.

    Google Scholar 

  7. Rusten, B., Matteson, E., Broch-Due, A., & Westrum, T. (1994). Water Science and Technology, 30(3), 161–171.

    CAS  Google Scholar 

  8. Johnson, C. H., Page, M. W., & Blaha, L. (2000). Water Science and Technology, 41(4–5), 401–407.

    CAS  Google Scholar 

  9. Rusten, B., Siljudalen, J. G., & Strand, H. (1996). Water Science and Technology, 34(11), 41–49. doi:10.1016/S0273-1223(96)00819-0.

    Article  CAS  Google Scholar 

  10. Broch-Due, A., Andersen, R., & Opheim, B. (1997). Water Science and Technology, 35(2–3), 173–180. doi:10.1016/S0273-1223(96)00929-8.

    Article  CAS  Google Scholar 

  11. Rusten, B., Kolkinn, O., & Ødegaard, H. (1997). Water Science and Technology, 35(6), 71–79. doi:10.1016/S0273-1223(97)00097-8.

    Article  CAS  Google Scholar 

  12. Rusten, B., Hem, L. J., & Ødegaard, H. (1995). Water Environment Research, 67, 75–86. doi:10.2175/106143095X131213.

    Article  CAS  Google Scholar 

  13. Jahren, S. J., Rintala, J. A., & Odegaard, H. (2002). Water Research, 36, 1067–1075. doi:10.1016/S0043-1354(01)00311-6.

    Article  CAS  Google Scholar 

  14. Hosseini, S. H., & Borghei, S. M. (2005). Process Biochemistry, 40, 1027–1031. doi:10.1016/j.procbio.2004.05.002.

    Article  CAS  Google Scholar 

  15. AFNOR. (1985), Normalisation française, NFT 90–312.

  16. APHA. (1992). Standard methods for the examination of water and wastewater (18th ed.). Washington DC: APHA/AWWA/WEF.

    Google Scholar 

  17. Commandeur, L. C. M., & Parson, J. R. (1990). Biodegradation, 1, 207–220. doi:10.1007/BF00058837.

    Article  CAS  Google Scholar 

  18. López, J. M., Koopman, B., & Bitton, G. (1986). Biotechnology and Bioengineering, 28, 1080–1085. doi:10.1002/bit.260280719.

    Article  Google Scholar 

  19. Moreno-Andrade, I., & Buitrón, G. (2004). Water Science and Technology, 50(10), 251–258.

    CAS  Google Scholar 

  20. Vázquez-Rodríguez, G. A., Garabétian, F., & Rols, J.-L. (2007). Chemosphere, 68(8), 1447–1454. doi:10.1016/j.chemosphere.2007.03.073.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by CONACYT through the project 46093Y and PAPIIT 101707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Buitrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Andrade, I., Buitrón, G. & Vargas, A. Effect of Starvation and Shock Loads on the Biodegradation of 4-Chlorophenol in a Discontinuous Moving Bed Biofilm Reactor. Appl Biochem Biotechnol 158, 222–230 (2009). https://doi.org/10.1007/s12010-008-8392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8392-z

Keywords

Navigation