Skip to main content
Log in

A Modified Method using TRIzol® Reagent and Liquid Nitrogen Produces High-Quality RNA from Rat Pancreas

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To establish an economical and reproducible method for the high-quality RNA extraction from pancreas, we isolated total RNA from rat pancreas with TRIzol® reagent and liquid nitrogen. In the initial stage, we optimized three influential factors, the way to homogenize pancreas, the time to collect the pancreatic tissue from animals, and the weight of the pancreatic tissue in 1 ml of TRIzol® reagent. The RNA quality was determined by detecting total RNA content and its absorbance at 260/280 nm wavelength, visualizing RNA in non-denatured agarose gel and performing RT-PCR of pancreas-specific genes. The A 260/A 280 ratio of the total RNA extracted by grinding 20–30 mg of rat pancreatic tissue removed from the rats in liquid nitrogen within 1 min and then immersed in 1 ml of the TRIzol® Reagent was 1.75–1.89, and the ratio of 28S/18S ribosomal RNA bands was more than 1.8. Furthermore, full length of Pdx1 open-reading frame was amplified with RNA extracted from the grinding group rather than from the conventional group. The RT-PCR products of pancreas-specific genes from both exocrine and endocrine parts of pancreas were successfully derived from the extracted RNA. The results suggested that we successfully provided an economical, fast, and reproducible method to obtain the high-quality and intact RNA from rat pancreas with TRIzol® Reagent and liquid nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cox, R. A. (1968). Methods in Enzymology, 12, 120–129. doi:10.1016/0076-6879(67)12123-X.

    Article  CAS  Google Scholar 

  2. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., & Rutter, W. J. (1979). Biochemistry, 18, 5294–5299. doi:10.1021/bi00591a005.

    Article  CAS  Google Scholar 

  3. Chomczynski, P., & Sacchi, N. (1987). Analytical Biochemistry, 162, 156–159. doi:10.1016/0003-2697(87)90021-2.

    Article  CAS  Google Scholar 

  4. Chomczynski, P., & Sacchi, N. (2006). Nature Protocols, 1, 581–585. doi:10.1038/nprot.2006.83.

    Article  CAS  Google Scholar 

  5. Beintema, J. J., Campagne, R. N., & Gruber, M. (1973). Biochimica et Biophysica Acta, 310, 148–160.

    CAS  Google Scholar 

  6. Mutter, G. L., Zahrieh, D., Liu, C., Neuberg, D., Finkelstein, D., Baker, H. E., et al. (2004). BMC Genomics, 5, 88. doi:10.1186/1471-2164-5-88.

    Article  CAS  Google Scholar 

  7. Mullin, A. E., Soukatcheva, G., Verchere, C. B., & Chantler, J. K. (2006). BioTechniques, 40, 617–621.

    Article  CAS  Google Scholar 

  8. Kiba, T., Kintaka, Y., Nakada, E., Suzuki, Y., Inoue, S., & Ishigaki, Y. (2007). Pancreas, 35, 98–100. doi:10.1097/01.mpa.0000278690.93930.b6.

    Article  Google Scholar 

  9. Evans, R., & Kamdar, S. J. (1990). BioTechniques, 8, 357–360.

    CAS  Google Scholar 

  10. Peirson, S. N., & Butler, J. N. (2007). Methods in Molecular Biology (Clifton, N.J.), 362, 315–327. doi:10.1007/978-1-59745-257-1_22.

    Article  CAS  Google Scholar 

  11. Salter, M. G., & Conlon, H. E. (2007). Methods in Molecular Biology (Clifton, N.J.), 362, 309–314. doi:10.1007/978-1-59745-257-1_21.

    Article  CAS  Google Scholar 

  12. Chen, J., Byrne, G. E. Jr., & Lossos, I. S. (2007). Diagnostic Molecular Pathology, 16, 61–72. doi:10.1097/PDM.0b013e31802f0804.

    Article  Google Scholar 

  13. Xiang, X., Qiu, D., Hegele, R. D., & Tan, W. C. (2001). Journal of Virological Methods, 94, 129–135. doi:10.1016/S0166-0934(01)00284-1.

    Article  CAS  Google Scholar 

  14. Gill, S. S., Aubin, R. A., Bura, C. A., Curran, I. H., & Matula, T. I. (1996). Molecular Biotechnology, 6, 359–362. doi:10.1007/BF02761714.

    Article  CAS  Google Scholar 

  15. Wang, S. S., Sherman, M. E., Rader, J. S., Carreon, J., Schiffman, M., & Baker, C. C. (2006). Diagnostic Molecular Pathology, 15, 144–148. doi:10.1097/01.pdm.0000213460.53021.cd.

    Article  CAS  Google Scholar 

  16. Dekairelle, A. F., Van der Vorst, S., Tombal, B., & Gala, J. L. (2007). Clinical Chemistry and Laboratory Medicine, 45, 1283–1287. doi:10.1515/CCLM.2007.281.

    Article  CAS  Google Scholar 

  17. Bendayan, M., & Ito, S. (1979). The Journal of Histochemistry and Cytochemistry, 27, 1029–1034.

    CAS  Google Scholar 

  18. Urban, E., Zingery, A. A., Bundrant, T., Weser, E., & Ziegler, D. M. (1982). Journal of Pediatric Gastroenterology and Nutrition, 1, 267–272.

    Article  CAS  Google Scholar 

  19. Potenza, N., Salvatore, V., Migliozzi, A., Martone, V., Nobile, V., & Russo, A. (2006). Nucleic Acids Research, 34, 2906–2913. doi:10.1093/nar/gkl368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Hongmin Li (School of Life Science, Northwest University, Xi’an, China) for her excellent technical assistance and to Mr. Muhanmude Shahzad for critical reading and linguistic correction of the manuscript.

Funding

The project was supported by the National Natural Science Foundation of China (No. 30400249, 30571725 and 30630058), the Shaanxi Province International Cooperational Foundation of China (No.2007-kw-06), and the Shaanxi Province Natural Science Foundation of China (No. 2004C256).

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmin Li.

Additional information

Dongmin Li and Wuchao Ren equally contributed to this work. Shemin Lu and Tianbao Song are co-corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Ren, W., Wang, X. et al. A Modified Method using TRIzol® Reagent and Liquid Nitrogen Produces High-Quality RNA from Rat Pancreas. Appl Biochem Biotechnol 158, 253–261 (2009). https://doi.org/10.1007/s12010-008-8391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8391-0

Keywords

Navigation