Skip to main content
Log in

Direct Observation of Single Molecule Conformational Change of Tight-Turn Paperclip DNA Triplex in Solution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DNA triplex modulates gene expression by forming stable conformation in physiological condition. However, it is not feasible to observe this unique molecular structure of large molecule with 54 oligodeoxynucleotides directly by conventional nuclear magnetic approach. In this study, we observed directly single molecular images of paperclip DNA triplexes formation in a buffer solution of pH 6.0 by atomic force microscopy (AFM). Meanwhile, a diffuse “tail” of unwound DNA was observed in pH 8.0 solution. This designable approach in visualizing the overall structures and shapes of oligo-DNAs at the single molecular level, by AFM, is applicable to other biopolymers as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

TFOs:

triplex-forming oligodeoxynucleotides

NMR:

nuclear magnetic resonance

CD:

circular dichroism

PITPNM 3:

phosphatidylinositol transfer protein membrane-associated genes

References

  1. Felsenfeld, G., Davies, D. R., & Rich, A. (1957). Journal of the American Chemical Society, 79, 2023–2024. doi:10.1021/ja01565a074.

    Article  CAS  Google Scholar 

  2. Wells, R. D., Collier, D. A., Hanvey, J. C., Shimizu, M., & Wohlrab, F. (1988). The FASEB Journal, 2, 2939–2949.

    CAS  Google Scholar 

  3. Moser, H. E., & Dervan, P. B. (1987). Science, 238, 645–650. doi:10.1126/science.3118463.

    Article  CAS  Google Scholar 

  4. Franqois, J.-C., Saison-Behmoaras, T., Barbier, C., Chassignol, M., Thuong, N. T., & Helene, C. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 9702–9706. doi:10.1073/pnas.86.24.9702.

    Article  Google Scholar 

  5. Sklenar, V., & Feigon, J. (1990). Nature, 345, 836–838. doi:10.1038/345836a0.

    Article  CAS  Google Scholar 

  6. Frank-Kamenetskii, M. D., & Mirkin, S. M. (1995). Annual Review of Biochemistry, 64, 65–95.

    Article  CAS  Google Scholar 

  7. Callahan, D. E., Trapane, T. L., Miller, P. S., Ts’o, P. O. P., & Kan, L. S. (1991). Biochemistry, 30, 1650–1655. doi:10.1021/bi00220a030.

    Article  CAS  Google Scholar 

  8. Kan, L. S., Pasternack, L., Wei, M. T., Tseng, Y. Y., & Huang, D. H. (2006). Biophysical Journal, 91, 2552–2563. doi:10.1529/biophysj.106.084137.

    Article  CAS  Google Scholar 

  9. Walter, A., Schütz, H., Simon, H., & Birch-Hirschfeld, E. (2001). Journal of Molecular Recognition, 14, 122–139. doi:10.1002/jmr.528.

    Article  CAS  Google Scholar 

  10. Chin, T. M., Lin, S. B., Lee, S. Y., Chang, M. L., Cheng, A. Y. Y., Chang, F. C., et al. (2000). Biochemistry, 39, 12457–12464. doi:10.1021/bi0004201.

    Article  CAS  Google Scholar 

  11. Pasternack, L., Lin, S. B., Chin, T. M., Lin, W. C., Huang, D. H., & Kan, L. S. (2002). Biophysical Journal, 82, 3170–3180.

    Article  CAS  Google Scholar 

  12. Ocaka, L., Spalluto, C. C., Wilson, I., Hunt, D. M., & Halford, S. (2005). Cytogenetic and Genome Research, 108, 293–302. doi:10.1159/000081519.

    Article  CAS  Google Scholar 

  13. Hansma, H. G., Sinsheimer, R. L., Li, M.-Q., & Hansma, P. K. (1992). Nucleic Acids Research, 20, 3585–3590. doi:10.1093/nar/20.14.3585.

    Article  CAS  Google Scholar 

  14. Hansma, H. G., Revenko, I., Kim, K., & Laney, D. E. (1996). Nucleic Acids Research, 24, 713–720. doi:10.1093/nar/24.4.713.

    Article  CAS  Google Scholar 

  15. Dahlgren, P. R., & Lyubchenko, Y. L. (2002). Biochemistry, 41, 11372–11378. doi:10.1021/bi026102e.

    Article  CAS  Google Scholar 

  16. Moreno-Herrero, F., Colchero, J., & Baró, A. M. (2003). Ultramicroscopy, 96, 167–174. doi:10.1016/S0304-3991(03)00004-4.

    Article  CAS  Google Scholar 

  17. Hansma, H. G. (2001). Annual Review of Physical Chemistry, 52, 71–92. doi:10.1146/annurev.physchem.52.1.71.

    Article  CAS  Google Scholar 

  18. Admcik, J., Klinov, D. V., Witz, G., Sekatskii, S. K., & Dietler, G. (2006). FEBS Letters, 580, 5671–5675. doi:10.1016/j.febslet.2006.09.017.

    Article  CAS  Google Scholar 

  19. Jiang, Y., Ke, C., Mieczkowski, P. A., & Marszalek, P. E. (2007). Biophysical Journal, 93, 1758–1767. doi:10.1529/biophysj.107.108209.

    Article  CAS  Google Scholar 

  20. Tiner Sr, W. J., Potaman, V. N., Sinden, R. R., & Lyubchenko, Y. L. (2001). Journal of Molecular Biology, 314, 353–357. doi:10.1006/jmbi.2001.5174.

    Article  CAS  Google Scholar 

  21. Klinov, D., Dwir, B., Kapon, E., Borovok, N., Molotsky, T., & Kotlyar, A. (2007). Nanotechnology, 18, 225102–225109. doi:10.1088/0957-4484/18/22/225102.

    Article  CAS  Google Scholar 

  22. Marsh, T. C., Vesenka, J., & Henderson, E. (1995). Nucleic Acids Research, 23, 696–700. doi:10.1093/nar/23.4.696.

    Article  CAS  Google Scholar 

  23. Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., Gall, A. A., & Lyubchenko, Y. L. (2000). Nucleic Acids Research, 28, 3472–3477. doi:10.1093/nar/28.18.3472.

    Article  CAS  Google Scholar 

  24. Fasman, G. D. (1975). CRC Handbook of Biochemstry and Molecular Biology (vol. 1, 3rd ed.). Cleveland: CRC.

    Google Scholar 

  25. Lyubchenko, Y. L., Shlyakhtenko, L., Harrington, R., & Oden, P. (1993). Proceedings of the National Academy of Sciences of the United States of America, 90, 2137–2140. doi:10.1073/pnas.90.6.2137.

    Article  CAS  Google Scholar 

  26. Chang, C. C., Lin, P. Y., Chen, Y. F., Chang, C. S., & Kan, L. S. (2007). Applied Physics Letters, 91, article No. 203901. doi:10.1063/1.2809406.

  27. Gustafson, M. P., Thomas Jr, C. F., Rusnak, F., Limper, A. H., & Leof, E. B. (2001). The Journal of Biological Chemistry, 276, 835–843. doi:10.1074/jbc.M007814200.

    Article  CAS  Google Scholar 

  28. Gray, D. M., Hamilton, F. D., & Vaughn, M. R. (1978). Biopolymers, 17, 85–106. doi:10.1002/bip.1978.360170107.

    Article  CAS  Google Scholar 

  29. Seksek, O., & Bolard, J. (1996). Journal of Cell Science, 109, 257–262.

    CAS  Google Scholar 

  30. Altan, N., Chen, Y., Schindler, M., & Simon, S. M. (1998). The Journal of Experimental Medicine, 187, 1583–1598. doi:10.1084/jem.187.10.1583.

    Article  CAS  Google Scholar 

  31. Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., et al. (2007). PLoS Biology, 5, 2113–2144. doi:10.1371/journal.pbio.0050254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the BioAFM supported by Department of Biological Sciences and Technology at National Chiao Tung University, and National Nano Device Laboratories. The work is supported by National Science Council of Taiwan (NSC 95-2113-M-001-043-MY2 and NSC 97-2112-M-009-MY3 to LSK and CCC, respectively) and Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia-Ching Chang or Lou-Sing Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CP., Wey, MT., Chang, CC. et al. Direct Observation of Single Molecule Conformational Change of Tight-Turn Paperclip DNA Triplex in Solution. Appl Biochem Biotechnol 159, 261–269 (2009). https://doi.org/10.1007/s12010-008-8390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8390-1

Keywords

Navigation