Skip to main content
Log in

Engineering of Cysteine Residues Leads to Improved Production of a Human Dipeptidase Enzyme in E. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Low yields, poor folding efficiencies and improper disulfide bridge formation limit large-scale production of cysteine-rich proteins in Escherichia coli. Human renal dipeptidase (MDP), the only human β-lactamase known to date, is a homodimeric enzyme, which contains six cysteine residues per monomer. It hydrolyses penem and carbapenem β-lactam antibiotics and can cleave dipeptides containing amino acids in both d- and l-configurations. In this study, MDP accumulated in inactive form in high molecular weight, disulfide-linked aggregates when produced in the E. coli periplasm. Mutagenesis of Cys361 that mediates dimer formation and Cys93 that is unpaired in the native MDP led to production of soluble recombinant enzyme, with no change in activity compared with the wild-type enzyme. The removal of unpaired or structurally inessential cysteine residues in this manner may allow functional production of many multiply disulfide-linked recombinant proteins in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rai, M., & Padh, H. (2001). Current Science, 80, 1121–1128.

    CAS  Google Scholar 

  2. Spada, S., & Walsh, G. (2004). Directory of approved biopharmaceutical products. Boca Raton: CRC.

    Google Scholar 

  3. Ito, M., Yamagoe, S., Tomizawa, K., Mizuno, S., Tanokura, M., & Suzuki, K. (1997). Cytotechnology, 25, 235–238. doi:10.1023/A:1007976103088.

    Article  CAS  Google Scholar 

  4. Kurokawa, Y., Yanagi, H., & Yura, T. J. (2001). The Journal of Biological Chemistry, 276, 14393–14399. doi:10.1074/jbc.M104341200.

    Article  CAS  Google Scholar 

  5. Kolade, O. O., Bamford, V. A., Ancillo Anton, G., Jones, J. D., Vera, P., & Hemmings, A. M. (2006). Biochimica et Biophysica Acta, 1764, 1043–1053.

    CAS  Google Scholar 

  6. Kiedzierska, A., Czepvzynska, H., Smietana, K., & Otlewski, J. (2008). Protein Expression and Purification, 60, 82–88. doi:10.1016/j.pep.2008.03.019.

    Article  CAS  Google Scholar 

  7. Xu, C. G., Fan, X. J., Fu, Y. J., & Liang, A. H. (2008). Protein Expression and Purification, 59, 103–109. doi:10.1016/j.pep.2008.01.009.

    Article  CAS  Google Scholar 

  8. Qiu, J., Swartz, J. R., & Georgiou, G. (1998). Applied and Environmental Microbiology, 64, 4891–4896.

    CAS  Google Scholar 

  9. Winter, J., Neubauer, P., Glockshuber, R., & Rudolph, R. (2001). Journal of Biotechnology, 84, 175–185. doi:10.1016/S0168-1656(00)00356-4.

    Article  CAS  Google Scholar 

  10. Joly, J. C., & Swartz, J. R. (1997). Biochemistry, 36, 10067–10072. doi:10.1021/bi9707739.

    Article  CAS  Google Scholar 

  11. Ito, M., Nagata, K., Kato, Y., Oda, Y., Yamagoe, S., Suzuki, K., & Tanokura, M. (2003). Protein Expression and Purification, 27, 272–278. doi:10.1016/S1046-5928(02)00634-4.

    Article  CAS  Google Scholar 

  12. Berkmen, M., Boyd, D., & Beckwith, J. (2005). The Journal of Biological Chemistry, 280, 11387–11394. doi:10.1074/jbc.M411774200.

    Article  CAS  Google Scholar 

  13. Bardwell, J. C. (1994). Molecular Microbiology, 14, 199–205. doi:10.1111/j.1365-2958.1994.tb01281.x.

    Article  CAS  Google Scholar 

  14. Sone, M., Akiyama, Y., & Ito, K. (1997). The Journal of Biological Chemistry, 272, 10349–10352. doi:10.1074/jbc.272.16.10349.

    Article  CAS  Google Scholar 

  15. Beckwith, J. (2007). Genetics, 176, 733–740. doi:10.1534/genetics.107.076240.

    Article  CAS  Google Scholar 

  16. Hu, X., O’Dwyer, R., & Wall, J. G. (2005). Journal of Biotechnology, 120, 38–45. doi:10.1016/j.jbiotec.2005.05.018.

    Article  CAS  Google Scholar 

  17. Joly, J. C., Leung, W. S., & Swartz, J. R. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 2773–2777. doi:10.1073/pnas.95.6.2773.

    Article  CAS  Google Scholar 

  18. Kang, S. H., Kim, D. M., Kim, H. J., Jun, S. Y., Lee, K. Y., & Kim, H. J. (2005). Biotechnology Progress, 21, 1412–1419. doi:10.1021/bp050087y.

    Article  CAS  Google Scholar 

  19. Kera, Y., Liu, Z., Matsumoto, T., Sorimachi, Y., Nagasaki, H., & Yamada, R. H. (1999). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 123, 53–58. doi:10.1016/S0305-0491(99)00039-5.

    Article  CAS  Google Scholar 

  20. Nitanai, Y., Satow, Y., Adachi, H., & Tsujimoto, M. (2002). Journal of Molecular Biology, 321, 177–184. doi:10.1016/S0022-2836(02)00632-0.

    Article  CAS  Google Scholar 

  21. Kropp, H., Sundelof, J. G., Hajdu, R., & Kahan, F. M. (1982). Antimicrobial Agents and Chemotherapy, 22, 62–70.

    CAS  Google Scholar 

  22. Bagshawe, K. D., Sharma, S. K., & Begent, R. H. (2004). Expert Opinion on Biological Therapy, 4, 1777–1789. doi:10.1517/14712598.4.11.1777.

    Article  CAS  Google Scholar 

  23. Grant, J. W., & Smyth, T. P. (2004). The Journal of Organic Chemistry, 69, 7965–7970. doi:10.1021/jo048970i.

    Article  CAS  Google Scholar 

  24. Ge, L., Knappik, A., Pack, P., Freund, C., & Plückthun, A. (1995). In C. A. K. Borrebaeck (Ed.), Antibody engineering (2nd ed., pp. 229–266). London: Oxford University Press.

    Google Scholar 

  25. Nishihara, K., Kanemori, M., Yanagi, H., & Yura, T. (2000). Applied and Environmental Microbiology, 66, 884–889. doi:10.1128/AEM.66.3.884-889.2000.

    Article  CAS  Google Scholar 

  26. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  27. Baneyx, F., & Mujacic, M. (2004). Nature Biotechnology, 22, 1399–1408. doi:10.1038/nbt1029.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  29. Heywood, S. P., & Hooper, N. M. (1995). Analytical Biochemistry, 226, 10–14. doi:10.1006/abio.1995.1184.

    Article  CAS  Google Scholar 

  30. Pérez-Pérez, J., Martínez-Caja, C., Barbero, J. L., & Gutiérrez, J. (1995). Biochemical and Biophysical Research Communications, 210, 524–529. doi:10.1006/bbrc.1995.1691.

    Article  Google Scholar 

  31. Hu, X., O’Hara, L., White, S., Magner, E., Kane, M., & Wall, J. G. (2007). Protein Expression and Purification, 52, 194–201. doi:10.1016/j.pep.2006.08.009.

    Article  CAS  Google Scholar 

  32. Zhang, Z., Li, Z. H., Wang, F., Fang, M., Yin, C. C., Zhou, Z. Y., et al. (2002). Protein Expression and Purification, 26, 218–228. doi:10.1016/S1046-5928(02)00502-8.

    Article  CAS  Google Scholar 

  33. Maskos, K., Huber-Wunderlich, M., & Glockshuber, R. (2003). Journal of Molecular Biology, 325, 495–513. doi:10.1016/S0022-2836(02)01248-2.

    Article  CAS  Google Scholar 

  34. Leinweber, B., Barofsky, E., Barofsky, D. F., Ermilov, V., Nylin, K., & Beckman, J. S. (2004). Free Radical Biology & Medicine, 36, 911–918. doi:10.1016/j.freeradbiomed.2003.12.021.

    Article  CAS  Google Scholar 

  35. Kondo, A., Kohda, J., Endo, Y., Shiromizu, T., Kurokawa, Y., Nishihara, K., et al. (2000). Journal of Bioscience and Bioengineering, 90, 600–606. doi:10.1263/jbb.90.600.

    Article  CAS  Google Scholar 

  36. Keynan, S., Habgood, N. T., Hooper, N. M., & Turner, A. J. (1996). Biochemistry, 35, 12511–12517. doi:10.1021/bi961193z.

    Article  CAS  Google Scholar 

  37. Paborsky, L. R., Tate, K. M., Harris, R. J., Yansura, D. G., Band, L., McCray, G., et al. (1989). Biochemistry, 28, 8072–8077. doi:10.1021/bi00446a016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Timothy Smyth and Sylvain Robin for helpful discussions and Tewfik Soulimane for technical assistance. Barbara Leiting of Merck kindly provided cilastatin sodium. This work was funded by the Enterprise Ireland Science and Technology agency grant SC/2001/432 (ROD) and by the Higher Education Authority through the Programme for Research in Third Level Institutions (RR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gerard Wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Dwyer, R., Razzaque, R., Hu, X. et al. Engineering of Cysteine Residues Leads to Improved Production of a Human Dipeptidase Enzyme in E. coli . Appl Biochem Biotechnol 159, 178–190 (2009). https://doi.org/10.1007/s12010-008-8379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8379-9

Keywords

Navigation