Skip to main content
Log in

Synthesis and Properties of Surface Molecular Imprinting Adsorbent for Removal of Pb2+

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new chitosan imprinting adsorbent using diatomite as core material was prepared by using the surface molecular imprinting technology with the Pb2+ as imprinted ion. The preparation process conditions of the surface molecular imprinting adsorbent were studied. The adsorbent was characterized by using Fourier transform infrared (FTIR) spectrum. FTIR spectrum indicated that it was cross-linked by epichlorohydrin. The new imprinting adsorbent could provide a higher adsorption capacity for Pb2+, which reached 139.6 mg/g increasing 32.3% compared with cross-linking chitosan adsorbent (the initial Pb2+ concentration of 600 mg/L). The adsorption velocity was quick and the equilibration time of the imprinting adsorbent for Pb2+ was 3 h that shortened about 40% compared with cross-linking chitosan adsorbent. It had a more wide pH range of 5–7 than that of cross-linking chitosan adsorbent. The new imprinting adsorbent can be reused for up to ten cycles without loss of adsorption capacity. In the kinetics and isotherm study, the pseudosecond order model and Langmuir model could represent the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Degs, Y., Khraisheh, M. A. M., & Tutunji, M. F. (2001). Water Research, 35, 3724–3728. doi:10.1016/S0043-1354(01)00071-9.

    Article  CAS  Google Scholar 

  2. Jin, L., & Bai, R. (2002). Langmuir, 18, 9765–9770. doi:10.1021/la025917l.

    Article  CAS  Google Scholar 

  3. Ying, X., & Fang, Z. (2006). Journal of Hazardous Materials, 137, 1636–1642. doi:10.1016/j.jhazmat.2006.04.055.

    Article  CAS  Google Scholar 

  4. Entezari, M. H., & Bastami, T. R. (2006). Journal of Hazardous Materials, 137, 959–964. doi:10.1016/j.jhazmat.2006.03.019.

    Article  CAS  Google Scholar 

  5. Wan Ngah, W. S., Endud, C. S., & Mayanar, R. (2002). Reactive & Functional Polymers, 50, 181–190. doi:10.1016/S1381-5148(01)00113-4.

    Article  Google Scholar 

  6. Huang, C., Chung, Y. C., & Liou, M. R. (1996). Journal of Hazardous Materials, 45, 265–277. doi:10.1016/0304-3894(95)00096-8.

    Article  CAS  Google Scholar 

  7. Liu, X. D., Tokura, S., Haruki, M., Nishi, N., & Sakairi, N. (2002). Carbohydrate Polymers, 49, 103–108. doi:10.1016/S0144-8617(01)00308-3.

    Article  CAS  Google Scholar 

  8. Chu, K. H. (2002). Journal of Hazardous Materials, 90, 77–95. doi:10.1016/S0304-3894(01)00332-6.

    Article  CAS  Google Scholar 

  9. Al-Ghouti, M. A., Khraisheh, M. A. M., & Tutuji, M. (2004). Chemical Engineering Journal, 104, 83–91. doi:10.1016/j.cej.2004.07.010.

    Article  CAS  Google Scholar 

  10. Al-Degs, Y., Khrasisheh, M. A. M., & Tutunji, M. F. (2001). Water Research, 35, 3724–3728.

    Article  CAS  Google Scholar 

  11. Wulff, G. (1995). Angewandte Chemie. International Edition in English, 34, 1812–1832. doi:10.1002/anie.199518121.

    Article  CAS  Google Scholar 

  12. Vallano, P. T., & Remcho, V. T. (2000). Journal of Chromatography. A, 887, 125–135. doi:10.1016/S0021-9673(99)01199-1.

    Article  CAS  Google Scholar 

  13. Ye, L., Ramstrom, O., & Mosbach, K. (1998). Analytical Chemistry, 70, 2789–2795. doi:10.1021/ac980069d.

    Article  CAS  Google Scholar 

  14. Haijia, S., Sa, C., & Tianwei, T. (2007). Process Biochemistry, 42, 612–619. doi:10.1016/j.procbio.2006.11.013.

    Article  Google Scholar 

  15. Haijia, S., Zhixing, W., & Tianwei, T. (2005). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80, 439–444. doi:10.1002/jctb.1206.

    Google Scholar 

  16. Li, Q., Su, H., Li, J., & Tan, T. (2007). Journal of Environmental Management, 85, 900–907. doi:10.1016/j.jenvman.2006.10.023.

    Article  CAS  Google Scholar 

  17. Haijia, S., Ying, Z., Jia, L., & Tianwei, T. (2006). Process Biochemistry, 41, 1422–1426.

    Article  CAS  Google Scholar 

  18. Li, N., & Bai, R. (2005). Industrial & Engineering Chemistry Research, 44, 6692–6700. doi:10.1021/ie050145k.

    Article  CAS  Google Scholar 

  19. Ho, Y. S., & McKay, G. (1999). Water Research, 33, 578–584. doi:10.1016/S0043-1354(98)00207-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to express their thanks for the supports from Natural Science Foundation of China (20636010 and 50373003), the National Basic Research Program (973 Program) of China (2007CB714305), and the (863) High Technology Project (2006AA020101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijia Su.

Appendix

Appendix

c 0 :

the initial concentration of metal ion (mg/L)

η :

the removal rate

Q :

the quality of the adsorbed Pb for per gram adsorbent (mg/g)

c e :

the equilibrated concentrations of metal ion (mg/L),

V :

the volume of added solution (L)

W :

the weight of the adsorbent (g)

t :

the adsorption time (min)

q :

the adsorptive capacity of time (mg/g)

q e :

the balance adsorption capacity (mg/g)

k 2 :

the second-level adsorption velocity constant [g/(mg min)]

q m :

the maximum adsorption capacity (mg/g)

b :

constant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Su, H., Huo, H. et al. Synthesis and Properties of Surface Molecular Imprinting Adsorbent for Removal of Pb2+ . Appl Biochem Biotechnol 160, 467–476 (2010). https://doi.org/10.1007/s12010-008-8366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8366-1

Keywords

Navigation