Skip to main content
Log in

Yarrowia lipolytica Growth Under Increased Air Pressure: Influence on Enzyme Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of microbial cell cultures oxygenation can be achieved by the increase of total air pressure, which increases oxygen solubility in the medium. In this work, a pressurized bioreactor was used for Yarrowia lipolytica batch cultivation under increased air pressure from 1 to 6 bar. Cell growth was strongly enhanced by the pressure rise. Fivefold and 3.4-fold increases in the biomass production and in specific growth rate, respectively, were observed under 6 bar. The increase of oxygen availability caused the induction of the antioxidant enzyme superoxide dismutase, which indicates that the defensive mechanisms of the cells against oxidative stress were effective and cells could cope with increased pressure. The pregrowth of Y. lipolytica under increased pressure conditions did not affect the lipase production ability of the cells. Moreover, the extracellular lipase activity increased 96% using a 5-bar air pressure instead of air at 1-bar pressure during the enzyme production phase. Thus, air pressure increase in bioreactors is an effective mean of cell mass and enzyme productivity enhancement in bioprocess based in Y. lipolytica cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barth, G., & Gaillardin, C. (1996). In K. Wolf (Ed.), Nonconventional yeasts in biotechnology (pp. 313–388). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  2. Zvyagilskaya, R., Andreishcheva, E., Soares, M. I. M., Khozin, I., Behre, A., & Persson, B. L. (2001). Journal of Basic Microbiology, 41, 289–303.

    Article  CAS  Google Scholar 

  3. Aguedo, M., Gomes, N., Garcia, E. E., Waché, Y., Mota, M., Teixeira, J. A., et al. (2005). Biotechnology Letters, 27, 1617–1621.

    Article  CAS  Google Scholar 

  4. Knoll, A., Bartsch, S., Husemann, B., Engel, P., Schroer, K., Ribeiro, B., et al. (2007). Journal of Biotechnology, 132(2), 167–179.

    Article  CAS  Google Scholar 

  5. Charoenrat, T., Ketudat-Cairns, M., Jahic, M., Veide, A., & Enfors, S.-O. (2006). Biochemical Engineering Journal, 30, 205–211.

    Article  CAS  Google Scholar 

  6. Knoll, A., Maier, B., Tscherrig, H., & Buchs, J. (2005). Advances in Biochemical Engineering Biotechnology, 92, 77–99.

    CAS  Google Scholar 

  7. Onken, U., & Liefke, E. (1989). Advances in Biochemical Engineering Biotechnology, 40, 137–169.

    CAS  Google Scholar 

  8. Izawa, S., Inoue, Y., & Kimura, A. (1995). FEBS Letters, 368, 73–76.

    Article  CAS  Google Scholar 

  9. Moradas-Ferreira, P., Costa, V., Piper, P., & Mager, W. (1996). Molecular Microbiology, 19, 651–658.

    Article  CAS  Google Scholar 

  10. Belo, I., Pinheiro, R., & Mota, M. (2003). Biotechnology Progress, 19, 665–671.

    Article  CAS  Google Scholar 

  11. Pinheiro, R., Belo, I., & Mota, M. (2000). Enzyme and Microbial Technology, 26, 756–762.

    Article  CAS  Google Scholar 

  12. Beers, R. F., & Sizer, I. W. (1952). Journal of Biological Chemistry, 195, 276–287.

    Google Scholar 

  13. Marklund, S., & Marklund, G. (1974). European Journal of Biochemistry, 47(3), 469–474.

    Article  CAS  Google Scholar 

  14. Lopes, M., Gomes, N., Gonçalves, C., Coelho, M. A. Z., Mota, M., & Belo, I. (2008). Letters in Applied Microbiology, 46, 255–260.

    Article  CAS  Google Scholar 

  15. Pinheiro, R., Belo, I., & Mota, M. (1997). Biotechnology Letters, 19(7), 703–708.

    Article  CAS  Google Scholar 

  16. L’italien, Y., Thibault, J., & LeDuy, A. (1989). Biotechnology Letters, 15, 189–194.

    Google Scholar 

  17. Matsui, T., Shinzato, N., Yokota, H., Takahashi, J., & Sato, S. (2006). Process Biochemistry, 41(4), 920–924.

    Article  CAS  Google Scholar 

  18. Han, J., & Zhong, J.-J. (2003). Enzyme and Microbial Technology, 32(3–4), 498–503.

    Article  CAS  Google Scholar 

  19. Amaral, P. F. F., de Almeida, A. P., Peixoto, T., Rocha-Leão, M. H. M., Coutinho, J. A. P., & Coelho, M. A. Z. (2007). World Journal of Microbiology & Biotechnology, 23, 339–344.

    Article  CAS  Google Scholar 

  20. Kawasse, F. M., Amaral, P. F., Rocha-Leão, M. H. M., Amaral, A. L., Ferreira, E. C., & Coelho, M. A. Z. (2003). Bioprocess and Biosystems Engineering, 25, 371–375.

    Article  CAS  Google Scholar 

  21. Biryukova, E. N., Medentsev, A. G., Arinbasarova, A. Y., & Akimenko, V. K. (2006). Microbiology, 75(3), 243–247.

    Article  CAS  Google Scholar 

  22. Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2006). Biochemical Engineering Journal, 27, 287–294.

    Article  CAS  Google Scholar 

  23. Destain, J., Fickers, P., Weekers, F., Moreau, B., & Thonart, P. (2005). Applied Biochemistry and Biotechnology, 121(1–3), 269–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Belo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, M., Gomes, N., Mota, M. et al. Yarrowia lipolytica Growth Under Increased Air Pressure: Influence on Enzyme Production. Appl Biochem Biotechnol 159, 46–53 (2009). https://doi.org/10.1007/s12010-008-8359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8359-0

Keywords

Navigation