Skip to main content
Log in

Poly-β-hydroxybutyrate Production by Fast-Growing Rhizobia Cultivated in Sludge and in Industrial Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In our study, the potential of producing polyhydroxybutyrate (PHB) by cultivating fast-growing rhizobia (Sinorhizobium meliloti, Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli and R. leguminosarum bv. trifolii) in sludge and in industrial wastewater was evaluated. Results confirmed the possibility of using sludge as media for rhizobial growth. During growth, substantial quantity of PHB was accumulated and yields varied depending on the media and rhizobial species. Growing in sludge, PHB production did not exceed 3.7% w/w for all strains at the end of experiment (after 72 h). During the growth of S. meliloti, PHB yield varied and the maximum value reached 7.27% w/w after 60 h, with 1% Total Suspend Solid (TSS) sludge. Alkaline sludge pre-treatment affects rhizobial growth but did not improve the PHB accumulation. While growing S. meliloti in industrial wastewater, the PHB yields varied and the highest value was obtained with slaughterhouse wastewater (10.7% w/w) after 35 h of growth. Therefore, this work shows the potential of exploiting PHB production by rhizobia growing in wastewater or sludge which could be applied to bioplastic industry, and confirms the potential of these recyclable wastes for high production of rhizobial cells useable for legumes inoculants production. This study provides an environmentally sound way of sludge and wastewater management and use in diverse biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ben Rebah, F., Tyagi, R. D., Filali-Meknassi, Y., & Surampalli, R. Y. (2004). Bacterial productions of bioplastics in advances in water and wastewater treatment. American Society of Civil Engineers (ASCE), 42–71.

  2. Fiechter, A. (1990). Plastics from bacteria and for bacteria. In Poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters (pp. 77–93). New York: Springer.

  3. Hayaward, A. C., Forsyth, W. G. C., & Roberts, J. B. (1959). Synthesis and breakdown of poly-β-hydroxybutyric acid by bacteria. Journal of General Microbiology, 20(3), 510–518.

    Google Scholar 

  4. Vincent, J. M., Humphrey, B., & North, J. (1962). Some features of the fine structure and chemical composition of Rhizobium trifolii. Journal of General Microbiology, 29(3), 551–555.

    CAS  Google Scholar 

  5. Steinbuchel, A., Haywood, G. W., Anderson, A. J., Williams, D. R., Dawes, E. A., & Ewing, D. F. (1991). Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. International Journal of Biological Macromolecules, 13(2), 83–88. doi:10.1016/0141-8130(91)90053-W.

    Article  Google Scholar 

  6. Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for poly (3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17(6), 335–342. doi:10.1007/s004490050394.

    Article  CAS  Google Scholar 

  7. Yu, P. H. F., Chua, H., Huang, A. L., Lo, W. H., & Ho, K. P. (1999). Transformation of industrial food waste into polyhydroxyalkanoates. Water Science and Technology, 40(1), 365–370. doi:10.1016/S0273-1223(99)00402-3.

    Article  CAS  Google Scholar 

  8. Dave, H., Ramakrishna, C., & Desai, J. D. (1996). Production of polyhydroxybutyrate by petrochemical activated sludge and Bacillus sp. IPCB-403. Indian Journal of Experimental Biology, 34(3), 216–219.

    CAS  Google Scholar 

  9. Ben Rebah, F., Prevost, D., Yezza, A., & Tyagi, R. D. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresource Technology, 98(18), 3535–3546. doi:10.1016/j.biortech.2006.11.066.

    Article  CAS  Google Scholar 

  10. APHA American Public Health Association (1992). Standard methods for examination of water and wastewater (18th ed.). Washington, D.C.: American Public Health Association.

    Google Scholar 

  11. Comeau, Y., Hall, K., & Oldham, W. K. (1988). Determination of poly-β-hydroxyvalerate in activated sludge by gas–liquid chromatography. Applied and Environmental Microbiology, 54(9), 2325–2327.

    CAS  Google Scholar 

  12. Ben Rebah, F., Tyagi, R. D., & Prevost, D. (2001). Acid and alkaline treatments for enhancing the growth of rhizobia in sludge. Canadian Journal of Microbiology, 47(6), 467–474. doi:10.1139/cjm-47-6-467.

    Article  Google Scholar 

  13. Ben Rebah, F., Tyagi, R. D., Prevost, D., & Surampalli, R. Y. (2002). Wastewater sludge as a new medium for rhizobial growth. Water Quality Research Journal of Canada, 37(2), 353–370.

    CAS  Google Scholar 

  14. Ben Rebah, F., Prevost, D., & Tyagi, R. D. (2002). Growth of alfalfa in sludge-amended soils and inoculated with rhizobia produced in sludge. Journal of Environmental Quality, 31(4), 1339–1348.

    Article  Google Scholar 

  15. Ben Rebah, F., Tyagi, R. D., & Prevost, D. (2002). Production of Sinorhizobium meliloti using wastewater sludge as a raw material: effect of nutrient addition and pH control. Environmental Technology, 23(6), 623–629. doi:10.1080/09593332308618378.

    Article  CAS  Google Scholar 

  16. Ben Rebah, F., Tyagi, R. D., & Prevost, D. (2002). Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresource Technology, 83(2), 145–151. doi:10.1016/S0960-8524(01)00202-4.

    Article  CAS  Google Scholar 

  17. Nair, S., Jha, P. K., & Babu, C. R. (1993). Variation in poly-β-hydroxybutyrate synthesis in rhizobia reflects strain differentiation and temperature regulation. Journal of Basic Microbiology, 33(1), 35–39. doi:10.1002/jobm.3620330107.

    Article  CAS  Google Scholar 

  18. Mercan, N., Aslim, B., Yuksekdag, N., & Beyatli, Y. (2002). Production of poly-β-hydroxybutyrate (PHB) by some Rhizobium bacteria. Turkish Journal of Biology, 26(4), 215–219.

    CAS  Google Scholar 

  19. Tavernier, P., Portais, J. C., Saucedo, J. E. N., Courtois, J., Courtois, B., & Barbotin, J. N. (1997). Exoploysaccharide and poly-β-hydroxybutyrate coproduction in two Rhizobium meliloti strains. Applied and Environmental Microbiology, 63(1), 21–26.

    CAS  Google Scholar 

  20. Halder, A. K., & Chakrabartty, P. K. (1995). Constitutive nitrate and nitrite reductase activities of Rhizobium in relation to denitrification. Journal of Basic Microbiology, 35(4), 233–239. doi:10.1002/jobm.3620350407.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassaad Belbahri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Rebah, F., Prévost, D., Tyagi, R.D. et al. Poly-β-hydroxybutyrate Production by Fast-Growing Rhizobia Cultivated in Sludge and in Industrial Wastewater. Appl Biochem Biotechnol 158, 155–163 (2009). https://doi.org/10.1007/s12010-008-8358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8358-1

Keywords

Navigation