Skip to main content

Advertisement

Log in

Autoacetylation of Purified Calreticulin Transacetylase Utilizing Acetoxycoumarin as the Acetyl Group Donor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2008

Abstract

Our earlier reports documented that calreticulin, a multifunctional Ca2+-binding protein in endoplasmic reticulum lumen, possessed protein acetyltransferase function termed Calreticulin Transacetylase (CRTAase). The autoacetylation of purified human placental CRTAase concomitant with the acetylation of receptor proteins by a model acetoxycoumarin, 7,8-Diacetoxy-4-methylcoumarin, was observed. Here, we have examined the autoacetylation property of CRTAase by immunoblotting and mass spectrometry. Ca2+ was found to inhibit CRTAase activity. The inhibition of both autoacetylation of CRTAase as well as acetylation of the receptor protein was apparent when Ca2+ was included in the reaction mixture as visualized by interaction with anti-acetyl lysine antibody. The acetylation of lysines residues: −48, −62, −64, −153, and −159 in N-domain and −206, −207, −209, and −238 in P-domain of CRTAase were located by high-performance liquid chromatography-electronspray ionization tandem mass spectrometry. Further, computer assisted protein structure modeling studies were undertaken to probe the effect of autoacetylation of CRTAase. Accordingly, the predicted CRTAase 3D model showed that all the loop regions of both N- and P-domain bear the acetylated lysines. Energy minimization of the acetylated residues revealed charge neutralization of lysines due to the N-ε-acetylation which may facilitate the interaction of CRTAase with the protein substrate and the subsequent transacetylase action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michalak, M., Milner, R. E., Burns, K., & Opas, M. (1992). Biochemical Journal, 285, 681–692.

    CAS  Google Scholar 

  2. Khanna, N. C., Tokuda, M., & Waisman, D. M. (1986). Journal of Biological Chemistry, 261, 8883–8887.

    CAS  Google Scholar 

  3. Baksh, S., Spamer, C., Heilmann, C., & Michalak, M. (1995). FEBS Letters, 375, 53–57.

    Article  Google Scholar 

  4. Baksh, S., & Michalak, M. (1991). Journal of Biological Chemistry, 266, 458–465.

    Google Scholar 

  5. Treves, S., DeMattei, M., Lanfredi, M., Villa, A., Green, N. M., MacLennan, D. H., et al. (1990). Biochemical Journal, 271, 473–480.

    CAS  Google Scholar 

  6. Williams, D. B. (1995). Biochemistry and Cell Biology, 73, 123–132.

    Article  CAS  Google Scholar 

  7. Wada, I., Rindress, D., Cameron, P. H., Ou, W. J., Doherty, J. J., Louvard, D., et al. (1991). Journal of Biological Chemistry, 266, 19599–19610.

    CAS  Google Scholar 

  8. Schrag, J. D., Bergeron, J. J., Li, Y., Borisova, S., Hahn, M., Thomas, D. Y., et al. (2001). Molecular Cell, 8, 633–644.

    Article  CAS  Google Scholar 

  9. Ellgaard, L., Riek, R., Herrmann, T., Güntert, P., Braun, D., Helenius, A., et al. (2001). Procedings of National Acadamy of Sciences of United States of America, 98, 3133–3138.

    Article  CAS  Google Scholar 

  10. Khurana, P., Kumari, R., Vohra, P., Kumar, A., Seema, Gupta, G., et al. (2006). Bioorganic and Medicinal Chemistry, 14, 575–583.

    Article  CAS  Google Scholar 

  11. Raj, H. G., Parmar, V. S., Jain, S. C., Goel, S., Singh, A., Gupta, K., et al. (1999). Bioorganic and Medicinal Chemistry, 7, 369–373.

    Article  CAS  Google Scholar 

  12. Raj, H. G., Parmar, V. S., Jain, S. C., Kohli, E., Ahmad, N., et al. (2000). Bioorganic and Medicinal Chemistry, 8, 1707–1712.

    Article  CAS  Google Scholar 

  13. Bansal, S., Gaspari, M., Raj, H. G., Cuda, G., Verheij, E., Tyagi, Y. K., et al. (2008). Applied Biochemistry and Biotechnology, 144, 37–45.

    Article  CAS  Google Scholar 

  14. Dormeyer, W., Ott, M., & Scnolzer, M. (2005). Molecular and Cellular Proteomics, 4, 1226–1239.

    Article  CAS  Google Scholar 

  15. Kim, J. Y., Kim, K. W., Kwon, H. J., Lee, D. W., & Yoo, J. S. (2002). Analytical Chemistry, 74, 5443–5449.

    Article  CAS  Google Scholar 

  16. Seema, Kumari, R., Gupta, G., Saluja, D., Kumar, A., Goel, S., et al. (2007). Cellular Biochemistry and Biophysics, 47, 53–64.

    CAS  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  18. Dey, A. C., Rahal, S., Rimsay, R. L., & Senciall, I. R. (1981). Analytical Biochemitry, 110, 373–379.

    Article  CAS  Google Scholar 

  19. Ornstein, L. (1964). Annals of New York Academy of Sciences, 121, 321–349.

    Article  CAS  Google Scholar 

  20. Davis, B. J. (1964). Annals of New York Academy of Sciences, 121, 404–427.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Nature (London), 227, 680–685.

    Article  CAS  Google Scholar 

  22. Perkins, D., Pappin, D., Creasy, D., & Cottrell, J. (1999). Electrophoresis, 20, 3551–3567.

    Article  CAS  Google Scholar 

  23. Craig, R., & Beavis, R. (2004). Bioinformatics, 20, 1466–1467.

    Article  CAS  Google Scholar 

  24. Collins, E. J., Garboczi, D. N., & Wiley, D. C. (1994). Nature, 371, 626–629.

    Article  CAS  Google Scholar 

  25. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  Google Scholar 

  26. InsightII, Version 2000 ed; Accelrys Inc.,: San Diego, CA.

  27. Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., & Hagler, A. T. (1988). Proteins: Structure, Function and Genetics, 4, 31–47.

    Article  CAS  Google Scholar 

  28. Raj, H. G., Kumari, R., Seema, Gupta, G., Kumar, R., Saluja, D., et al. (2006). Pure Applied Chemistry, 78, 985–992.

    Article  CAS  Google Scholar 

  29. Elaine, F. C., Karolina, M. M., Kim, O., Steve, J., Iain, D. C., Paul, E., et al. (2000). Journal of Biological Chemistry, 275, 27177–27185.

    Google Scholar 

  30. Ruiz-Carillo, A. B., Sendra, R., Galiana, M., Pamblanco, M., Perez-Ortin, J. E., & Tordera, V. (1998). Journal of Biological Chemistry, 273, 12599–12605.

    Article  Google Scholar 

  31. Marmorstein, R. (2001). Cellular and Molecular Life Sciences, 58, 693–703.

    Article  CAS  Google Scholar 

  32. Sterner, D. E., & Berger, S. L. (2000). Microbiology and Molecular Biology Reviews, 64, 435–459.

    Article  CAS  Google Scholar 

  33. Glozak, M. A., Sengupta, N., Zhang, X., & Seto, E. (2005). Gene, 363, 15–23.

    Article  CAS  Google Scholar 

  34. Zhang, K., & Dent, S. Y. (2005). Journal of Cellular Biochemistry, 96, 1137–1148.

    Article  CAS  Google Scholar 

  35. Costantini, C., Ko, M. H., Jonas, M. C., & Puglielli, L. (2007). Biochemical Journal, 407, 383–395.

    Article  CAS  Google Scholar 

  36. Chu, H. C., Makoto, H., & Anny, U. (2003). Nature, 424, 965–969.

    Article  CAS  Google Scholar 

  37. Yan, Y., Harper, S., Speicher, D. W., & Marmorstein, R. (2002). Nature (Structural Biology), 9, 862–869.

    CAS  Google Scholar 

  38. Thompson, P. R., Wang, D., Wang, L., Fulco, M., Pediconi, N., Zhang, D., et al. (2004). Nature (Structural and Molecular Biology), 11, 308–315.

    Article  CAS  Google Scholar 

  39. Balkhi, M. Y., Trivedi, A. K., Geletu, M., Christopeit, M., Bohlander, S. K., Behre, H. M., et al. (2006). Nature (Oncogene), 25, 7041–7058.

    CAS  Google Scholar 

  40. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., et al. (2003). Cell, 115, 629–640.

    Article  CAS  Google Scholar 

  41. Taylor, S. W., Fahy, E., Zhang, B., Glenn, G. M., Warnock, D. E., Wiley, S., et al. (2003). Nature (Biotechnology), 21, 281–286.

    Article  CAS  Google Scholar 

  42. Sung, C. K., Robert, S., Yue, C., Yingda, X., Haydn, B., Jimin, P., et al. (2006). Molecular Cell, 23, 607–618.

    Article  CAS  Google Scholar 

  43. The PyMOL Molecular Graphics System, version 0.99; DeLano Scientific: San Carlos, CA, USA, 2002

Download references

Acknowledgement

This work was supported by Department of Biotechnology, Government of India and Italian Ministry of University and Research, General Management of Strategies and Development of Internationalization of Scientific and Technological Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanumantharao G. Raj.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-008-8394-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, S., Ponnan, P., Raj, H.G. et al. Autoacetylation of Purified Calreticulin Transacetylase Utilizing Acetoxycoumarin as the Acetyl Group Donor. Appl Biochem Biotechnol 157, 285–298 (2009). https://doi.org/10.1007/s12010-008-8357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8357-2

Keywords

Navigation