Skip to main content
Log in

An Effective Device for Gas–Liquid Oxygen Removal in Enclosed Microalgae Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A high-performance gas–liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, \(K_{{\text{La}},{\text{CO}}_2 }^{\text{A}} \) for the absorption of gaseous CO2 and \(K_{{\text{La}},{\text{O}}_2 }^{\text{D}} \) for the desorption of dissolved O2 were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borowitzka, M. A. (1999b). Journal of Biotechnology, 70, 313–321. doi:10.1016/S0168-1656(99)00083-8.

    Article  CAS  Google Scholar 

  2. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Biotechnology Progress, 22, 1490–1506. doi:10.1021/bp060065r.

    CAS  Google Scholar 

  3. Weissman, J. C., Goebel, R. P., & Benemann, J. R. (1988). Biotechnology and Bioengineering, 33, 336–344. doi:10.1002/bit.260310409.

    Article  Google Scholar 

  4. Travesio, L., Hall, D. O., Rao, K. K., Benitez, F., Sanchez, E., & Borja, R. (2001). International Biodeterioration & Biodegradation, 47, 151–155. doi:10.1016/S0964-8305(01)00043-9.

    Article  Google Scholar 

  5. Morita, M., Watanable, Y., & Saiki, H. (2000). Biotechnology and Bioengineering, 74, 135–144.

    Google Scholar 

  6. Fuentes, M. M. R., Sanchez, J. L. G., Sevilla, J. M. F., Fernandez, F. G. A., & Grima, E. M. (1999). Journal of Biotechnology, 70, 271–288. doi:10.1016/S0168-1656(99)00080-2.

    Article  Google Scholar 

  7. Fernandez, A. F. G., Sevilla, J. M. F., Perez, J. A. S., Molina, E., & Chisti, Y. (2001). Chemical Engineering Science, 56, 2721–2732. doi:10.1016/S0009-2509(00)00521-2.

    Article  CAS  Google Scholar 

  8. Cong, W., Su, Z. F., Kang, R. J., Yang, C. Y., & Cai, Z. L. (2006). International Patent PCT/CN2006/003357. Patent of China CN200510126465.2.

  9. Chisti, Y. (1989). Airlift bioreactors. New York: Elsevier.

    Google Scholar 

  10. Kawagoe, M., Nakao, K., & Otakc, T. (1975). Journal of Chemical Engineering of Japan, 8, 254–256. doi:10.1252/jcej.8.254.

    Article  CAS  Google Scholar 

  11. Fresenius, W., & Ouentin, K. E. (1988). Water analysis pp. 247–251. Berlin: Springer.

    Google Scholar 

  12. Molina Grima, E., Sanchez Perez, J. A., Garcia Camacho, F., & Robles Medina, A. (1993). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 56, 329–337.

    CAS  Google Scholar 

  13. Verlaan, P., & Tramper, J. (1987). In G. W. Moody, & P. B. Baker (Eds.), Bioreactors and biotransformations pp. 363–373. London: Elsevier.

    Google Scholar 

  14. Carvalho, A. P., & Xavier Malcata, F. (2001). Biotechnology Progress, 17, 265–272. doi:10.1021/bp000157v.

    Article  CAS  Google Scholar 

  15. Talbot, P., Gortares, M. P., Lencki, R. W., & de la Noue, J. (1991). Biotechnology and Bioengineering, 37, 834–842. doi:10.1002/bit.260370907.

    Article  CAS  Google Scholar 

  16. OH-Hama, T., & Miyachi, S. (1988). In M. A. Borowitzka, & L. J. Borowitzka (Eds.), Micro-algael biotechnology pp. 2–19. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Carvalho, A. P., & Malcata, F. X. (2005). Marine Biotechnology (New York, NY), 7, 381–388. doi:10.1007/s10126-004-4047-4.

    CAS  Google Scholar 

  18. Richmond, A., Boussiba, S., Vonshak, A., & Kopel, R. (1993). Journal of Applied Phycology, 5, 327–332. doi:10.1007/BF02186235.

    Article  Google Scholar 

  19. Torzillo, G., Puspararaj, B., Boai, F., Balloni, W., Materassi, R., & Florenzano, G. (1986). Biomass, 11, 61–74. doi:10.1016/0144-4565(86)90021-1.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the support of national key task project of China (no. 2006BAD09A12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Z., Kang, R., Shi, S. et al. An Effective Device for Gas–Liquid Oxygen Removal in Enclosed Microalgae Culture. Appl Biochem Biotechnol 160, 428–437 (2010). https://doi.org/10.1007/s12010-008-8353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8353-6

Keywords

Navigation