Skip to main content
Log in

Strain Construction for Ethanol Production from Dilute-Acid Lignocellulosic Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to construct a strain that converts sugar mixture and resist/metabolize inhibitors in lignocellulosic dilute-acid hydrolysate, the biotechnology of inactive intergeneric fusion between Saccharomyces cerevisiae and Pachysolen tannophilis was performed. Fusant 1 was successfully obtained as a hybrid strain, which was screened out by xylose and mixed sugar (xylose and glucose) fermentation. This strain showed good abilities of ethanol production, ethanol tolerance, and resistance to the toxic inhibitors presenting in the hydrolysate. The maximum volumetric yield of ethanol and yield of xylitol in mixed sugar was 9.52 g/l and 0.44 g/g, respectively. The results indicated that the constructed strain Fusant 1 was a good producer for ethanol and xylitol from lignocellulosic dilute-acid hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aristos, A., & Merja, P. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11, 187–198. doi:10.1016/S0958-1669(00)00085-9.

    Article  Google Scholar 

  2. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology, 30, 279–291. doi:10.1007/s10295-003-0049-x.

    Article  CAS  Google Scholar 

  3. Satoshi, K., Atsuko, M., Hideki, F., & Akihiko, K. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology, 72, 1136–1143. doi:10.1007/s00253-006-0402-x.

    Article  Google Scholar 

  4. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26. doi:10.1007/s00253-004-1642-2.

    Article  CAS  Google Scholar 

  5. Heluane, H. (1993). Characterization of hybrids obtained by protoplast fusion between Pachysolen tannophilis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 40, 98–100. doi:10.1007/BF00170435.

    Article  CAS  Google Scholar 

  6. Jhannsan, E., Eagal, L., & Brendenhann, G. (1985). Protoplast fusion used for the construction of presumptive ploypiods of the D-xylose fermenting yeast Candida shehatae. Current Genetics, 9, 313–319. doi:10.1007/BF00419961.

    Article  Google Scholar 

  7. Kordowska, W. M., & Targonski, Z. (2001). Application of Saccharomyces cerevisiae and Pichia stipitis karyoduction to the production of ethanol from xylose. Acta Microbiologica Polonica, 50, 291–299.

    Google Scholar 

  8. Ferencezy, L., Kevei, F., & Zsolt, J. (1974). Fusion of fungal Protoplast. Nature, 248, 793–794. doi:10.1038/248793a0.

    Article  Google Scholar 

  9. Kao, K. N., & Michayluk, M. R. A. (1974). Method for high frequency intergeneric fusion of plant protoplasts. Planta, 115, 355–367. doi:10.1007/BF00388618.

    Article  CAS  Google Scholar 

  10. Perberdy, J. F. (1980). Protoplast fusion—a tool for genetic manipulation and breeding industrial microorganisms. Enzyme and Microbial Technology, 2, 23–29. doi:10.1016/0141-0229(80)90004-6.

    Article  Google Scholar 

  11. Zimmermann, U., & Pilwat, G. (1978). The relevance of electric field induced changes in the membrane structure to basic membraneresearch and clinical therapeutics and diagnosis. In: Abstract of the 6th International Biophysics Congress Kyoto, IV-19-(H):140

  12. Ferenczy, L. (1984). Fungal protoplast fusion. In R. F. Beers Jr, & E. G. Bassett (Eds.), Cell fusion: Gene transfer and transformation. New York: Raveb Oressam.

    Google Scholar 

  13. Wright, W. E. (1978). The isolation of heterokaryons and hybrids by a selective system using irreversible biochemical inhibitors. Experimental Cell Research, 112, 395–407. doi:10.1016/0014-4827(78)90222-7.

    Article  CAS  Google Scholar 

  14. Fodor, K. (1978). Journal of Bacteriology, 135(1), 68–70.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Science and Technology for financial support (nos. 2001AA514024 and 2002AA514010). We gratefully acknowledge the Department of Energy Chemical Engineering (East China University of Science and Technology, Shanghai, China) for providing the hydrolysate used in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiushan Yang.

Additional information

F. Yan, F. Bai, and S. Tian contributed equally to this research work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, F., Bai, F., Tian, S. et al. Strain Construction for Ethanol Production from Dilute-Acid Lignocellulosic Hydrolysate. Appl Biochem Biotechnol 157, 473–482 (2009). https://doi.org/10.1007/s12010-008-8343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8343-8

Keywords

Navigation