Skip to main content
Log in

Analysis of Rhamnolipid Biosurfactants Produced Through Submerged Fermentation Using Orange Fruit Peelings as Sole Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentative production of rhamnolipid biosurfactant from Pseudomonas aeruginosa MTCC 2297 was carried out by submerged fermentation using various cost-effective waste materials such as orange peelings, carrot peel waste, lime peelings, coconut oil cake, and banana waste. The orange peel was found to be the best substrate generating 9.18 g/l of rhamnolipid biosurfactant with a surface tension reduction up to 31.3 mN/m. The production was growth independent, and optimum conditions were standardized. The emulsifying activity was highest against kerosene (73.3%). Rhamnolipid components were purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, high-performance liquid chromatography and thin-layer chromatography. The major rhamnolipid components were characterized, by fast atom bombardment mass spectrometry, as a mixture of dirhamnolipids and monorhamnolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

  2. Kim, H. S., Yoon, B. D., Choung, D. H., Oh, H. M., Katsurazi, T., & Tani, Y. (1999). Applied Microbiology and Biotechnology, 52, 713–721. doi:10.1007/s002530051583.

    Article  CAS  Google Scholar 

  3. Makkar, R. S., & Cameotra, S. S. (2002). Applied Microbiology and Biotechnology, 58, 428–434. doi:10.1007/s00253-001-0924-1.

    Article  CAS  Google Scholar 

  4. Benincasa, M., Abalos, A., Moraes, I. O., & Manresa, A. (2004). Anton.van. Leeuw, 85, 1–8. doi:10.1023/B:ANTO.0000020148.45523.41.

    Article  CAS  Google Scholar 

  5. Nitschke, M., Ferraz, C., & Pastore, G. M. (2004). Brazilian Journal of Microbiology, 35, 81–85. doi:10.1590/S1517-83822004000100013.

    Article  Google Scholar 

  6. Fox, S. L., & Bala, G. A. (2000). Bioresource Technology, 75, 235–240. doi:10.1016/S0960-8524(00)00059-6.

    Article  CAS  Google Scholar 

  7. Belligno, A., Leo, M. G. D., Marchese, M., & Tuttobene, R. (2005). Agronomy for Sustainable Development, 25, 129–135. doi:10.1051/agro:2004063.

    Article  Google Scholar 

  8. Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Journal of Applied Microbiology, 88, 379–387. doi:10.1046/j.1365-2672.2000.00961.x.

    Article  CAS  Google Scholar 

  9. Arino, S., Marchal, R., & Vandecasteele, J. P. (1996). Applied Microbiology and Biotechnology, 45, 162–168. doi:10.1007/s002530050665.

    Article  CAS  Google Scholar 

  10. Sim, L., Ward, O. P., & Li, Z. Y. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 232–238. doi:10.1038/sj.jim.2900450.

    Article  CAS  Google Scholar 

  11. Chandrasekaran, E. V., & Bemiller, J. N. (1980). In L. Wrhiste, & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry (Vol. III, pp. 89–97). New York: Academic.

    Google Scholar 

  12. Itoh, S., Honda, H., Tomota, F., & Suzuki, T. (1971). Journal of Antibiotics, 24, 855–859.

    CAS  Google Scholar 

  13. Ellaiah, P., Prabhakar, T., Sreekanth, M., Thaer Taleb, A., Bhima Raju, P., & Saisha, V. (2002). Indian Journal of Experimental Biology, 40, 1083–1086.

    CAS  Google Scholar 

  14. Harkins, W. D., & Alexander, A. E. (1959) In Physical methods of organic chemistry (Vol. 1, pp. 757–814). Sydney: Interscience.

  15. APHA.AWWA, WPCF (1989) 17th edn. USA: Macmillan.

  16. Lowry, O. H., Rosebough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  17. Hedge, J. E., & Hofreiter, B. T. (Eds.). (1962). Carbohydrate chemistry. New York: Academic.

  18. Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., et al. (2006). Bioresource Technology, 97, 2457–2461. doi:10.1016/j.biortech.2005.10.029.

    Article  CAS  Google Scholar 

  19. Wu, S. S. H., Platt, K. A., Ratnayake, C., Wang, T., Ting, J. T. L., & Huang, A. H. C. (1997). Plant Biology, 94, 12711–12716.

    CAS  Google Scholar 

  20. Rendell, N. B., Taylor, G. W., Somerville, M., Todd, H., Wilson, R., & Cole, P. J. (1990). Biochimica et Biophysica Acta, 1045, 189–193.

    CAS  Google Scholar 

  21. Mercade, M. E., Monleon, L., Andres, C., Rodon, I., Martinez, E., Espuny, M. J., et al. (1996). The Journal of Applied Bacteriology, 81, 161–166.

    CAS  Google Scholar 

  22. Mercade, M. E., Manresa, M. A., Robert, M., Espuny, M. J., Andres, C., & Guinea, J. (1993). Bioresource Technology, 43, 1–6. doi:10.1016/0960-8524(93)90074-L.

    Article  CAS  Google Scholar 

  23. Manresa, M. A., Bastida, J., Mercade, M. E., Robert, M., Andres, C., Espuny, M. J., et al. (1991). Journal of Industrial Microbiology, 8, 133–136. doi:10.1007/BF01578765.

    Article  CAS  Google Scholar 

  24. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508. doi:10.1007/s002530051648.

    Article  CAS  Google Scholar 

  25. Deziel, E., Lepine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica et Biophysica Acta, 1440, 244–252.

    CAS  Google Scholar 

  26. Turkovskaya, O. V., Dmitrieva, T. V., Muratova, A., & Yu, A. (2001). Applied Biochemistry and Microbiology, 37, 71–75. doi:10.1023/A:1002800610430.

    Article  CAS  Google Scholar 

  27. Nitschke, M., Costa, S. G. V. O., Haddad, R., Goncalves, L. A. G., Eberlin, M. N., & Contiero, C. (2005). Biotechnology Progress, 21, 1562–1566. doi:10.1021/bp050198x.

    Article  CAS  Google Scholar 

  28. Gunther, N. W., Nunez, A., Fett, W., & Solaiman, D. K. Y. (2005). Applied and Environmental Microbiology, 71, 2288–2293. doi:10.1128/AEM.71.5.2288-2293.2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the School of Biosciences, Mahatma Gandhi University, Kottayam for the facilities provided for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jayachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S., Jayachandran, K. Analysis of Rhamnolipid Biosurfactants Produced Through Submerged Fermentation Using Orange Fruit Peelings as Sole Carbon Source. Appl Biochem Biotechnol 158, 694–705 (2009). https://doi.org/10.1007/s12010-008-8337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8337-6

Keywords

Navigation