Skip to main content
Log in

Key Factors Regarding Decolorization of Synthetic Anthraquinone and Azo Dyes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The factors affecting decolorization of anthraquinone dye represented by Reactive Blue 4 (RB4) and azo dye represented by Methyl Orange (MO) were studied in batch experiments under mesophilic (35 °C) and thermophilic (55 °C) anaerobic conditions. The results indicated differences in decolorization properties of the dyes with different chromophore structures. In abiotic conditions, MO could be decolorized by a physicochemical reaction when it was sterilized at 121 °C together with sludge cells or glucose. RB4 only showed absorption onto the cell mass. The presence of a redox mediator accelerated the decolorizing reaction when supplied together with glucose in the presence of sterilized sludge cells. In biotic conditions, the results indicated that the biological activity of microorganisms was an important factor in decolorization. The main factor involved in decolorization was the conversion of cosubstrate as electron donor, which reacted with dye as an electron acceptor in electron transfer. Redox mediators, anthraquinone-2-sulfonic acid, and anthraquinone could accelerate decolorization even if a small amount (0.2 mM) was applied. On the other hand, a high concentration of redox mediator (1.0 mM) had an inhibitory effect on decolorization especially under thermophilic conditions. In addition, the decolorization of dye was accelerated by increasing treatment temperature, as shown in biotic treatments. Based on these results, increasing the treatment temperature could be used to improve the decolorizing process of textile dye wastewater treatment, especially for recalcitrant dyes such as anthraquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robison, T., Nigam, P., et al. (2001). Applied Microbiology and Biotechnology, 56, 81–87. doi:10.1007/s002530000587.

    Article  CAS  Google Scholar 

  2. O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenco, N. D., Pinheiro, H. M., & Delee, W. (1999). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 74, 1009–1018. doi:10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N.

    Article  Google Scholar 

  3. Gingell, R., & Walker, R. (1971). Xenobiotica, 1, 231–239.

    Article  CAS  Google Scholar 

  4. Van der Zee, F. P., Bisschops, I. A. E., Blanchard, V. G., Bouwman, R. H. M., Lettinga, G., & Field, J. A. (2003). Water Research, 37, 3098–3109. doi:10.1016/S0043-1354(03)00166-0.

    Article  CAS  Google Scholar 

  5. Kudlich, M., Keck, A., Klein, J., & Stolz, A. (1997). Applied and Environmental Microbiology, 63, 3691–3694.

    CAS  Google Scholar 

  6. Cervantes, F. J., Van der Zee, F. P., Lettinga, G., & Field, J. A. (2001). Water Science and Technology, 44, 123–128.

    CAS  Google Scholar 

  7. Dos Santos, A. B., Cervantes, F. J., Yaya-Beas, R. E., & Van Lier, J. B. (2003). Enzyme and Microbial Technology, 33, 942–951. doi:10.1016/j.enzmictec.2003.07.007.

    Article  CAS  Google Scholar 

  8. Van der Zee, F. P., Lettinga, G., & Field, J. A. (2000). Water Science and Technology, 42, 301–308.

    Google Scholar 

  9. Field, J. A., Cervantes, F. J., van der Zee, F. P., & Lettinga, G. (2000). Water Science and Technology, 42, 215–222.

    CAS  Google Scholar 

  10. Dos Santos, A. B., Bisschops, I. A. E., Cervantes, F. J., & van Lier, J. B. (2004). Chemosphere, 55, 1149–1157. doi:10.1016/j.chemosphere.2004.01.031.

    Article  CAS  Google Scholar 

  11. Kashefi, K., Tor, J. T. M., Holmes, D. E., van Praagh, C. V. G., Reysenbach, A. L., & Lovley, D. R. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 719–728. doi:10.1099/ijs.0.01953-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was carried out under the JSPS-NRCT Scientific Cooperation Program and was financially supported by a Japanese government scholarship (MOMBUKAGAKUSHO: MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Imai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonyakamol, A., Imai, T., Chairattanamanokorn, P. et al. Key Factors Regarding Decolorization of Synthetic Anthraquinone and Azo Dyes. Appl Biochem Biotechnol 158, 180–191 (2009). https://doi.org/10.1007/s12010-008-8330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8330-0

Keywords

Navigation