Skip to main content
Log in

Constitutive Expression and Optimization of Nutrients for Streptokinase Production by Pichia pastoris Using Statistical Methods

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Pichia pastoris clone producing streptokinase (SK) was optimized for its nutritional requirements to improve intracellular expression using statistical experimental designs and response surface methodology. The skc gene was ligated downstream of the native glyceraldehyde 3-phosphate dehydrogenase promoter and cloned in P. pastoris. Toxicity to the host was not observed by SK expression using YPD medium. The transformant producing SK at level of 1,120 IU/ml was selected, and the medium composition was investigated with the aim of achieving high expression levels. The effect of various carbon and nitrogen sources on SK production was tested by using Plackett–Burman statistical design and it was found that dextrose and peptone are the effective carbon and nitrogen sources among all the tested. The optimum conditions of selected production medium parameters were predicted using response surface methodology and the maximum predicted SK production of 2,136.23 IU/ml could be achieved with the production medium conditions of dextrose (x1), 2.90%; peptone (x2), 2.49%; pH, 7.2 (x3), and temperature, 30.4 (x4). Validation studies showed a 95% increase in SK production as compared to that before optimization at 2,089 IU/ml. SK produced by constitutive expression was found to be functionally active by plasminogen activation assay and fibrin clot lysis assay. The current recombinant expression system and medium composition may enable maximum production of recombinant streptokinase at bioreactor level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tillett, W. S., & Garner, R. L. (1933). The Journal of Experimental Medicine, 58, 485–502. doi:10.1084/jem.58.4.485.

    Article  CAS  Google Scholar 

  2. Banerjee, A., Chisti, Y., & Banerjee, U. C. (2004). Biotechnology Advances, 22, 287–307. doi:10.1016/j.biotechadv.2003.09.004.

    Article  CAS  Google Scholar 

  3. Malke, H., & Ferretti, J. J. (1984). PNAS USA, 81, 3557–3561. doi:10.1073/pnas.81.11.3557.

    Article  CAS  Google Scholar 

  4. Malke, H., Gerlach, D., Kohler, W., & Ferretti, J. J. (1984). Molecular & General Genetics, 196, 360–363. doi:10.1007/BF00328072.

    Article  CAS  Google Scholar 

  5. Laplace, F., Muller, J., Gumpert, J., & Malke, H. (1989). FEMS Microbiology Letters, 53, 89–94. doi:10.1111/j.1574-6968.1989.tb03602.x.

    Article  CAS  Google Scholar 

  6. Hagenson, M. J., Holden, K. A., Parker, K. A., Wood, P. J., Cruze, J. A., et al. (1989). Enzyme and Microbial Technology, 11, 650–656. doi:10.1016/0141-0229(89)90003-3.

    Article  CAS  Google Scholar 

  7. Wong, S. L., Ruiqiong, Y., & Nathoo, S. (1994). Applied and Environmental Microbiology, 60, 517–523.

    CAS  Google Scholar 

  8. Pratap, J., Rajamohan, G., & Dikshit, K. L. (2000). Applied Microbiology and Biotechnology, 53, 469–475. doi:10.1007/s002530051643.

    Article  CAS  Google Scholar 

  9. Kumar, R., & Singh, J. (2004). Yeast (Chichester, England), 2, 1343–1358. doi:10.1002/yea.1184.

    Article  Google Scholar 

  10. Patrick, S. M., Fazenda, M. L., Mcneil, B., & Harvey, L. M. (2005). Yeast (Chichester, England), 22, 249–270. doi:10.1002/yea.1208.

    Article  Google Scholar 

  11. Invitrogen Instruction Manual, A manual of methods for expression of recombinant proteins in Pichia pastoris. 2002, Catalog no. K1710–01.

  12. Plackett, R. L., & Burman, J. P. (1946). Biometrika, 33, 305–325. doi:10.1093/biomet/33.4.305.

    Article  Google Scholar 

  13. Akhnazarova, S., & Kafarov, V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow: Mir Publications.

    Google Scholar 

  14. Myers, R. H., & Montgomery, D. C. (1995). Response Surface Methodology. In Process and Product Optimization Using Designed Experiments. New York: Wiley-Interscience.

  15. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: design and analysis. New York: Marcel Dekker Inc.

    Google Scholar 

  16. Potumarthi, R., Gopal, M., & Jetty, A. (2008). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8229-9.

  17. Dutta, J. R., Dutta, P. K., & Banerjee, R. (2004). Process Biochemistry, 39, 2193–2198. doi:10.1016/j.procbio.2003.11.009.

    Article  CAS  Google Scholar 

  18. Ravichandra, P., Subhakar, C., Pavani, A., & Jetty, A. (2008). Bioresource Technology, 99, 1776–1786. doi:10.1016/j.biortech.2007.03.041.

    Article  Google Scholar 

  19. Radhika, T., Kiran Kumar, D., Ravichandra, P., & Lakshmi Narasu, M. (2007). Applied Biochemistry and Biotechnology, 141, 187–201. doi:10.1007/BF02729061.

    Article  Google Scholar 

  20. Himabindu, M., Ravichandra, P., Vishalakshi, K., & Jetty, A. (2006). Applied Biochemistry and Biotechnology, 134, 143–154. doi:10.1385/ABAB:134:2:143.

    Article  CAS  Google Scholar 

  21. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.

    Google Scholar 

  22. Cochran, W. G., & Cox, G. M. (Eds.) (1957). In Experimental design. New York: Wiley.

    Google Scholar 

  23. Montgomery, D. (2001). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  24. Sands, D., Whitton, C. M., & Longstaff, C. (2004). Journal of Thrombosis and Haemostasis, 2(8), 1411–1415. doi:10.1111/j.1538-7836.2004.00814.x.

    Article  CAS  Google Scholar 

  25. Couto, L. T., Donato, J. L., & de Nucci, G. (2004). Brazilian Journal of Medical and Biological Research, 37(12), 1889–1894. doi:10.1590/S0100-879X2004001200015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a funding under the Technology Education Quality Improvement Program (TEQIP) by World Bank to Centre for Biotechnology, JNTU, Hyderabad. RNV acknowledges Council of Scientific and Industrial Research (CSIR) India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Narasu Mangamoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vellanki, R.N., Potumarthi, R. & Mangamoori, L.N. Constitutive Expression and Optimization of Nutrients for Streptokinase Production by Pichia pastoris Using Statistical Methods. Appl Biochem Biotechnol 158, 25–40 (2009). https://doi.org/10.1007/s12010-008-8315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8315-z

Keywords

Navigation