Skip to main content
Log in

PVA-Hydrogel Entrapped Candida Guilliermondii for Xylitol Production from Sugarcane Hemicellulose Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing–thawing method. Entrapment experiments were planned according to a 23 full factorial design, using the PVA concentration (80, 100, and 120 g L−1), the freezing temperature (−10, −15, and −20 °C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 °C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L−1, a xylitol yield on consumed xylose of 0.49 g g−1 and a xylitol volumetric productivity of 0.24 g L−1 h−1 were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mäkinen, K. K. (2000). Medical Hypotheses, 54, 603–613. doi:10.1054/mehy.1999.0904.

    Article  Google Scholar 

  2. Choi, J.-H., Moon, K.-H., Ryu, Y.-W., & Seo, J.-H. (2000). Biotechnology Letters, 22, 1625–1628. doi:10.1023/A:1005693427389.

    Article  CAS  Google Scholar 

  3. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Bioresource Technology, 65, 191–201. doi:10.1016/S0960-8524(98)00038-8.

    Article  Google Scholar 

  4. Granström, T. B., Izumori, K., & Leisola, M. (2007). Applied Microbiology and Biotechnology, 74, 273–276. doi:10.1007/s00253-006-0760-4.

    Article  CAS  Google Scholar 

  5. Sene, L., Converti, A., Felipe, M. G. A., & Silva, S. S. (2001). Applied Microbiology and Biotechnology, 57, 738–743. doi:10.1007/s002530100816.

    Article  CAS  Google Scholar 

  6. Converti, A., & Domínguez, J. M. (2001). Biotechnology and Bioengineering, 75, 39–45. doi:10.1002/bit.1162.

    Article  CAS  Google Scholar 

  7. Verbelen, P. J., Schutter, D. P., Delvaux, F., Verstrepen, K. J., & Delvaux, F. R. (2006). Biotechnology Letters, 28, 1515–1525.

    Article  CAS  Google Scholar 

  8. Skowronek, M., & Fiedurek, J. (2006). Enzyme and Microbial Technology, 38, 162–167. doi:10.1016/j.enzmictec.2005.05.011.

    Article  CAS  Google Scholar 

  9. Piyushkumar, M., Kiran, D., & Lele, S. S. (2007). Bioresource Technology, 98, 2892–2896. doi:10.1016/j.biortech.2006.09.046.

    Article  CAS  Google Scholar 

  10. Lozinsky, V. I., Zubov, A. L., & Titola, E. F. (1997). Enzyme and Microbial Technology, 20, 182–190. doi:10.1016/S0141-0229(96)00110-X.

    Article  CAS  Google Scholar 

  11. Chang, C. C., & Tseng, S. K. (1998). Biotechnology Techniques, 12, 865–868. doi:10.1023/A:1008895525476.

    Article  CAS  Google Scholar 

  12. Carvalho, W., Santos, J. C., Canilha, L., Almeida-Silva, J. B., Felipe, M. G. A., Mancilha, I. M., et al. (2004). Process Biochemistry, 39, 2135–2141. doi:10.1016/j.procbio.2003.11.021.

    Article  CAS  Google Scholar 

  13. Santos, J. C., Mussato, S. I., Dragone, G., Converti, A., & Silva, S. S. (2005). Biochemical Engineering Journal, 23, 1–9. doi:10.1016/j.bej.2004.10.001.

    Article  CAS  Google Scholar 

  14. Cunha, M. A. A., Converti, A., Santos, J. C., & Silva, S. S. (2006). World Journal of Microbiology & Biotechnology, 22, 65–72. doi:10.1007/s11274-005-6812-6.

    Article  CAS  Google Scholar 

  15. Santos, J. C., Pinto, I. R. G., Carvalho, W., Mancilha, I. M., Felipe, M. G. A., & Silva, S. S. (2005). Applied Biochemistry and Biotechnology, 122, 673–684. doi:10.1385/ABAB:122:1-3:0673.

    Article  Google Scholar 

  16. Lozinsky, V. I., & Plieva, F. M. (1998). Enzyme and Microbial Technology, 23, 227–242. doi:10.1016/S0141-0229(98)00036-2.

    Article  CAS  Google Scholar 

  17. Szczesna, M. A., & Galas, E. (2001). Biomolecular Engineering, 17, 55–63. doi:10.1016/S1389-0344(00)00065-4.

    Article  Google Scholar 

  18. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.

    Article  CAS  Google Scholar 

  19. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Bioresource Technology, 66, 25–40. doi:10.1016/S0960-8524(98)00037-6.

    Article  Google Scholar 

  20. Alves, L. A., Felipe, M. G. A., Silva, J. B. A., Silva, S. S., & Prata, A. M. R. (1998). Applied Biochemistry and Biotechnology, 70–72, 89–98.

    Article  Google Scholar 

  21. Pessoa, A., Mancilha, I. M., & Sato, S. (1997). Brazilian Journal of Chemical Engineering, 14, 291–297. doi:10.1590/S0104--66321997000300013.

    CAS  Google Scholar 

  22. Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., & Lee, H. (1988). Journal of Industrial Microbiology, 3, 241–251. doi:10.1007/BF01569582.

    Article  CAS  Google Scholar 

  23. Barros-Neto, B. (2003). In B. Barros-Neto, I. S. Scarminio, & R. E. Bruns (Eds.), Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria (pp. 83–148, 2nd ed.). Campinas, Brazil: Editora da UNICAMP.

    Google Scholar 

  24. Santos, J. C., Carvalho, W., Silva, S. S., & Converti, A. (2003). Biotechnology Progress, 19, 1210–1215. doi:10.1021/bp034042d.

    Article  CAS  Google Scholar 

  25. Santos, J. C., Converti, A., Carvalho, W., Mussatto, S. I., & Silva, S. S. (2005). Process Biochemistry, 40, 113–118. doi:10.1016/j.procbio.2003.11.045.

    Article  CAS  Google Scholar 

  26. Carvalho, W., Santos, J. C., Canilha, L., Silva, S. S., Perego, P., & Converti, A. (2005). Biochemical Engineering Journal, 25, 25–31. doi:10.1016/j.bej.2005.03.006.

    Article  CAS  Google Scholar 

  27. Pirt, S. J. (1975). Principles of microbe and cell cultivation pp. 1–30. New York: Wiley.

    Google Scholar 

  28. Carvalho, W., Silva, S. S., Converti, A., Vitolo, M., Felipe, M. G. A., Roberto, I. C., et al. (2002). Applied Biochemistry and Biotechnology, 98-100, 489–496. doi:10.1385/ABAB:98-100:1-9:489.

    Article  CAS  Google Scholar 

  29. Santos, J. C., Mussato, S. I., Cunha, M. A. A., & Silva, S. S. (2005). Biotechnology Progress, 21, 1639–1643. doi:10.1021/bp050219n.

    Article  CAS  Google Scholar 

  30. Santos, J. C., Silva, S. S., Mussatto, S. I., Carvalho, W., & Cunha, M. A. A. (2005). World Journal of Microbiology & Biotechnology, 21, 531–535. doi:10.1007/s11274--004--3490--8.

    Article  CAS  Google Scholar 

  31. Bicho, P. A., Runnals, P. L., Cunningham, J. D., & Lee, H. (1988). Applied and Environmental Microbiology, 54, 50–54.

    CAS  Google Scholar 

  32. Sene, L., Felipe, M. G. A., & Vitolo, M. (2001). Applied Biochemistry and Biotechnology, 91–93, 671–680. doi:10.1385/ABAB:91-93:1-9:671.

    Article  Google Scholar 

  33. Morita, T. A., & Silva, S. S. (2000). Applied Biochemistry and Biotechnology, 84–86, 801–808. doi:10.1385/ABAB:84-86:1-9:801.

    Article  Google Scholar 

  34. Paz, E. D. D., Santana, M. H. A., & Eguchi, S. Y. (1993). Applied Biochemistry and Biotechnology, 39–40, 455–466.

    Google Scholar 

  35. Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., & Mancilha, I. M. (1995). Journal of Basic Microbiology, 35, 171–177. doi:10.1002/jobm.3620350309.

    Article  CAS  Google Scholar 

  36. Felipe, M. G. A., Alves, L. A., Silva, S. S., & Roberto, I. C. (1996). Bioresource Technology, 56, 281–283. doi:10.1016/0960--8524(96)00031--4.

    Article  Google Scholar 

  37. Felipe, M. G. A., Vitolo, M., Mancilha, I. M., & Silva, S. S. (1997). Journal of Industrial Microbiology & Biotechnology, 18, 251–254. doi:10.1038/sj.jim.2900374.

    Article  CAS  Google Scholar 

  38. Carvalho, W., Silva, S. S., Converti, A., & Vitolo, M. (2002). Biotechnology and Bioengineering, 79, 165–169. doi:10.1002/bit.10319.

    Article  CAS  Google Scholar 

  39. Carvalho, W., Batista, M. A., Canilha, L., Santos, J. C., Converti, A., & Silva, S. S. (2004). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 79, 1308–1312. doi:10.1002/jctb.1131.

    Article  CAS  Google Scholar 

  40. Roberto, I. C., Silva, S. S., Felipe, M. G. A., Mancilha, I. M., & Sato, S. (1996). Applied Biochemistry and Biotechnology, 57–58, 339–347.

    Article  Google Scholar 

  41. Martynenko, N. N., Gracheva, I. M., Sarishvili, N. G., Zubov, A. L., Registan, G. I., & Lozinsky, V. I. (2004). Applied Biochemistry and Microbiology, 40, 158–164. doi:10.1023/B:ABIM.0000018919.13036.19.

    Article  CAS  Google Scholar 

  42. Navarro, A., Rubio, M. C., & Calmieri, D. A. S. (1983). European Journal of Applied Microbiology and Biotechnology, 17, 148–151. doi:10.1007/BF00505879.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of FAPESP and CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Converti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha, M.A.A., Converti, A., Santos, J.C. et al. PVA-Hydrogel Entrapped Candida Guilliermondii for Xylitol Production from Sugarcane Hemicellulose Hydrolysate. Appl Biochem Biotechnol 157, 527–537 (2009). https://doi.org/10.1007/s12010-008-8301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8301-5

Keywords

Navigation