Skip to main content
Log in

Biodegradation of Fluoranthene by Basidiomycetes Fungal Isolate Pleurotus Ostreatus HP-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biodegradation of fluoranthene, a high molecular weight polycyclic aromatic hydrocarbon (PAH), was investigated in submerged culture using the wood decaying fungus isolated from forest locality in Gujarat, India. The basidiomycete fungal isolate was found to have an ability to grow on sabaroud dextrose agar containing 50 mgl−1 of each naphthalene, anthracene, acenaphthene, benzo (a) anthracene, pyrene, flouranthene, carbazole, and biphenyl. The involvement of extracellular fungal peroxidases such as manganese peroxidase (MnP) and laccase (Phenol oxidase) in the degradation of fluoranthene was studied. On the eighth day of incubation 54.09% of 70 mg l−1 fluoranthene was removed. There after no PAHs removal was observed till the 20th day of the incubation period. The isolate was identified as Pleurotus ostreatus by 18S rRNA, 5.8S rRNA, and partial 28S rRNA gene sequencing. To the best of our knowledge this is the first time Pleurotus ostreatus have been reported to degrade such a high concentration of fluoranthene within much lower time period of incubation. Depletion in the residual fluoranthene in the culture medium was determined by HPLC. Attempts were made to identify the degradation product in the culture medium with the help of FT-IR, NMR, and HPTLC analysis. In the present study positive correlation between fluoranthene degradation and the ligninolytic enzyme (MnP and laccase) production is observed, thus this isolate can play an effective role for bioremediation of PAHs contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Environmental Science & Technology, 26, 1278–1284, doi:10.1021/es00031a002.

    Article  CAS  Google Scholar 

  2. Nadon, L., Siemiatycki, J., Dewar, R., Krewaski, D., & Guerin, M. (1995). American Journal of Industrial Medicine, 28, 303–324, doi:10.1002/ajim.4700280302.

    Article  CAS  Google Scholar 

  3. Christian, K., & Juan, M. L. (1997). Biotechnology Letters, 16, 759–764.

    Google Scholar 

  4. Giraud, F., Giraud, P., Kadri, M., Blake, G., & Steiman, R. (2001). Water Research, 35, 4126–4136, doi:10.1016/S0043-1354(01)00137-3.

    Article  CAS  Google Scholar 

  5. Guerin, T. F. (1999). Journal of Hazardous Materials, B65, 305–315, doi:10.1016/S0304-3894(99)00002-3.

    Article  Google Scholar 

  6. Chaudhary, G. R. (1994). Biological degradation and bioremediation of toxic chemicals. Portland, OR, USA: Dioscorides Press.

  7. Cerniglia, C. E. (1993). Current Opinion in Biotechnology, 4, 331–338, doi:10.1016/0958-1669(93)90104-5.

    Article  CAS  Google Scholar 

  8. Harayama, S. (1997). Current Opinion in Biotechnology, 8, 268–273, doi:10.1016/S0958-1669(97)80002-X.

    Article  CAS  Google Scholar 

  9. Dean-Ross, D., Moody, J. D., Freeman, J. P., Doerge, D. R., & Cerniglia, C. E. (2001). FEMS Microbiology Letters, 204, 205–211, doi:10.1111/j.1574-6968.2001.tb10886.x.

    Article  CAS  Google Scholar 

  10. Moody, J. D., Freeman, J. P., Doerge, D. R., & Cerniglia, C. E. (2001). Applied and Environmental Microbiology, 67, 1476–1483, dooi:10.1128/AEM.67.4.1476-483.2001.

    Article  CAS  Google Scholar 

  11. Sack, U., & Fritsche, W. (1997). FEMS Microbiology Ecology, 22, 77–83, doi:10.1111/j.1574-941.1997.tb00358.x.

    Article  CAS  Google Scholar 

  12. Kelly, I., Freeman, J. P., Evans, F. E., & Cerniglia, C. E. (1993). Applied and Environmental Microbiology, 59, 800–806.

    Google Scholar 

  13. Muncnerova, D., & Augustin, J. (1994). Bioresource Technology, 48, 97–106, doi:10.1016/0960-524(94)90195-3.

    Article  Google Scholar 

  14. Bogan, B. W., & Lamar, R. T. (1996). Applied and Environmental Microbiology, 62, 1597–1603.

    CAS  Google Scholar 

  15. Tien, M., & Kirk, T. K. (1988). Methods in Enzymology, 161, 238–249, DOI 10.1016/0076-6879(88)61025-1.

    Article  CAS  Google Scholar 

  16. Cerniglia, C. E. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 324–333, DOI 10.1038/sj.jim.2900459.

    Article  CAS  Google Scholar 

  17. Schutzendubel, A. M., Majcherczyk, A. Johannes, C., & Hutterman, A. (1999). International Biodeterioration and Biodegradation, 43, 93–100, doi:10.1016/S0964-8305(99)00035-9.

    Article  CAS  Google Scholar 

  18. Verdin, A., Lounes-Hadj Sahraoui, A., & Durand, R. (2004). International Biodeterioration and Biodegradation, 53, 65–70, doi:10.1016/j.ibiod.2003.12.001.

    Article  CAS  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biochemistry, 193, 265–275.

    CAS  Google Scholar 

  20. Niku-Paavola, M. L., Raaska, L., & Itavaara, M. (1990). Mycological Research, 94, 27–31.

    Article  Google Scholar 

  21. Martinez, M. J., Ruiz-Duenas, F. J., Guillen, F. A., & Martinez, A. T. (1996). European Journal of Biochemistry, 237, 424–432, doi:10.1111/j.1432-33.1996.0424k.x.

    Article  CAS  Google Scholar 

  22. Seigle-Murandi, F., Krivobok, S., Steiman, R., Thiault, G. A., & Benoit-Guyod, J. L. (1991b). Journal of Agricultural and Food Chemistry, 39, 428–430, doi:10.1021/jf00002a041.

    Article  CAS  Google Scholar 

  23. Tekere, M., Read, J. S., & Mattiasson, B. (2005). Journal of Biotechnology, 115, 367–377, doi:10.1016/j.jbiotec.2004.09.012.

    Article  CAS  Google Scholar 

  24. Collins, P. J., & Dobson, A. D. W. (1996). Biotechnology Letters, 18, 801–804, doi:10.1007/BF00127892.

    Article  CAS  Google Scholar 

  25. Dhawale, S. W., Dhawale, S. S., & Ross, D. D. (1999). Applied and Environmental Microbiology, 58, 3000–3006.

    Google Scholar 

  26. Moredo, N., Lorenzo, M., Dominguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). World Journal of Microbiology & Biotechnology, 19, 665–669, doi:10.1023/A:1025198917474.

    Article  CAS  Google Scholar 

  27. Morgan, R., Lewis, S. T., & Watkinson, R. J. (1991). Applied Microbiology and Biotechnology, 34, 693–696, doi:10.1007/BF00167925.

    Article  CAS  Google Scholar 

  28. Salicis, F., Krivobok, K., Jack, M., & Benoit Guyod, J. L. (1999). Chemo, 38, 3031–3039, doi:10.1016/S0045-535(98)00504-9.

    Article  CAS  Google Scholar 

  29. Seigle-Murandi, F., Krivobok, S., Steiman, R., Benoit-Guyod, J. L., & Thiault, G. A. (1991a). Applied Microbial Biotechnology, 34, 436–440.

    CAS  Google Scholar 

  30. Joner, E. J., Corgie, S. C., Amellal, N., & Leyval, C. (2002). Soil Biology & Biochemistry, 34, 859–864, doi:10.1016/S0038-0717(02)00018-4.

    Article  CAS  Google Scholar 

  31. Novotny, C., Svobodova, K., Erbanova, P., Cajthaml, T., Kasinath, A., Lang, E., et al. (2004). Soil Biology & Biochemistry, 36, 1545–1551, doi:10.1016/j.soilbio.2004.07.019.

    Article  CAS  Google Scholar 

  32. Novotny, C., Erbanova, P., Sasek, V., Kubatova, A., Cajthamal, T., Lang, E., et al. (1999). Biodegradation, 10, 159–168, doi:10.1023/A:1008324111558.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the University Grants Commission (UGC), [Grant No. F.30-181/2004 (SR)], New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Gupte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H., Gupte, A. & Gupte, S. Biodegradation of Fluoranthene by Basidiomycetes Fungal Isolate Pleurotus Ostreatus HP-1. Appl Biochem Biotechnol 157, 367–376 (2009). https://doi.org/10.1007/s12010-008-8286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8286-0

Keywords

Navigation